English

Evaluate the following integral: ∫01x(1-x)5⋅dx - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate the following integral:

`int_0^1 x(1 - x)^5 *dx`

Evaluate

Solution

Let I = `int_0^1 x(1 - x)^5 *dx`

= `int_0^1 (1 - x)[1 - (1 - x)]^5*dx     ...[because int_0^"a" f(x)*dx = int_0^"a" f("a" - x)*dx]`

= `int_0^1 (1 - x)x^5*dx`

= `int_0^1(x^5 - x^6)*dx`

= `int_0^1 x^5*dx - int_0^1 x^6*dx`

= `[(x^6)/6]_0^1 - [(x^7)/7]_0^1`

= `(1)/(6) (1^6 - 0) - (1)/(7) (1^7 - 0)`

= `(1)/(6) - (1)/(7)`

∴ I = `(1)/(42)`

shaalaa.com

Notes

The textbook answer is incorrect. Answer given in the textbook is `1/4^2`. However, as per our calculation, it is `1/42`.

  Is there an error in this question or solution?
Chapter 6: Definite Integration - EXERCISE 6.2 [Page 148]

APPEARS IN

RELATED QUESTIONS

If `int_0^alpha3x^2dx=8` then the value of α is :

(a) 0

(b) -2

(c) 2 

(d) ±2


Evaluate : `int e^x[(sqrt(1-x^2)sin^-1x+1)/(sqrt(1-x^2))]dx`


Evaluate : `intsec^nxtanxdx`


 
 

Evaluate `int_(-2)^2x^2/(1+5^x)dx`

 
 

By using the properties of the definite integral, evaluate the integral:

`int_0^pi (x  dx)/(1+ sin x)`


By using the properties of the definite integral, evaluate the integral:

`int_(pi/2)^(pi/2) sin^7 x dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2) (sin x - cos x)/(1+sinx cos x) dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^pi log(1+ cos x) dx`


Show that `int_0^a f(x)g (x)dx = 2 int_0^a f(x) dx`  if f and g are defined as f(x) = f(a-x) and g(x) + g(a-x) = 4.


\[\int\limits_0^a 3 x^2 dx = 8,\] find the value of a.


Evaluate :  `int 1/sqrt("x"^2 - 4"x" + 2) "dx"`


The c.d.f, F(x) associated with p.d.f. f(x) = 3(1- 2x2). If 0 < x < 1 is k`(x - (2x^3)/"k")`, then value of k is ______.


`int_0^{pi/2} log(tanx)dx` = ______


`int_(pi/18)^((4pi)/9) (2 sqrt(sin x))/(sqrt (sin x) + sqrt(cos x))` dx = ?


`int_0^{pi/2} cos^2x  dx` = ______ 


If `int_0^"k" "dx"/(2 + 32x^2) = pi/32,` then the value of k is ______.


`int_0^pi sin^2x.cos^2x  dx` = ______ 


`int_0^9 1/(1 + sqrtx)` dx = ______ 


`int_(-1)^1 (x + x^3)/(9 - x^2)  "d"x` = ______.


`int_0^(pi/2) (sin^"n" x"d"x)/(sin^"n" x + cos^"n" x)` = ______.


Evaluate the following:

`int_(-pi/4)^(pi/4) log|sinx + cosx|"d"x`


`int_((-pi)/4)^(pi/4) "dx"/(1 + cos2x)` is equal to ______.


If `int_0^"a" 1/(1 + 4x^2) "d"x = pi/8`, then a = ______.


If `f(a + b - x) = f(x)`, then `int_0^b x f(x)  dx` is equal to


`int_(-5)^5  x^7/(x^4 + 10)  dx` = ______.


If `int_a^b x^3 dx` = 0, then `(x^4/square)_a^b` = 0

⇒ `1/4 (square - square)` = 0

⇒ b4 – `square` = 0

⇒ (b2 – a2)(`square` + `square`) = 0

⇒ b2 – `square` = 0 as a2 + b2 ≠ 0

⇒ b = ± `square`


The value of the integral `int_0^sqrt(2)([sqrt(2 - x^2)] + 2x)dx` (where [.] denotes greatest integer function) is ______.


Let f be continuous periodic function with period 3, such that `int_0^3f(x)dx` = 1. Then the value of `int_-4^8f(2x)dx` is ______.


If f(x) = `{{:(x^2",", "where"  0 ≤ x < 1),(sqrt(x)",", "when"  1 ≤ x < 2):}`, then `int_0^2f(x)dx` equals ______.


Evaluate: `int_0^π 1/(5 + 4 cos x)dx`


`int_((-π)/2)^(π/2) log((2 - sinx)/(2 + sinx))` is equal to ______.


Evaluate: `int_1^3 sqrt(x + 5)/(sqrt(x + 5) + sqrt(9 - x))dx`


Evaluate `int_1^2(x+3)/(x(x+2))  dx`


 `int_-9^9 x^3/(4-x^2) dx` =______


Evaluate the following integral:

`int_0^1x (1 - x)^5 dx`


Evaluate the following integral:

`int_-9^9 x^3/(4 - x^2) dx`


Evaluate the following integral:

`int_0^1x(1 - x)^5dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×