Advertisements
Advertisements
Question
Evaluate the following integral:
`int_0^1 x(1 - x)^5 *dx`
Solution
Let I = `int_0^1 x(1 - x)^5 *dx`
= `int_0^1 (1 - x)[1 - (1 - x)]^5*dx ...[because int_0^"a" f(x)*dx = int_0^"a" f("a" - x)*dx]`
= `int_0^1 (1 - x)x^5*dx`
= `int_0^1(x^5 - x^6)*dx`
= `int_0^1 x^5*dx - int_0^1 x^6*dx`
= `[(x^6)/6]_0^1 - [(x^7)/7]_0^1`
= `(1)/(6) (1^6 - 0) - (1)/(7) (1^7 - 0)`
= `(1)/(6) - (1)/(7)`
∴ I = `(1)/(42)`
Notes
The textbook answer is incorrect. Answer given in the textbook is `1/4^2`. However, as per our calculation, it is `1/42`.
APPEARS IN
RELATED QUESTIONS
If `int_0^alpha3x^2dx=8` then the value of α is :
(a) 0
(b) -2
(c) 2
(d) ±2
Evaluate : `int e^x[(sqrt(1-x^2)sin^-1x+1)/(sqrt(1-x^2))]dx`
Evaluate : `intsec^nxtanxdx`
Evaluate `int_(-2)^2x^2/(1+5^x)dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^pi (x dx)/(1+ sin x)`
By using the properties of the definite integral, evaluate the integral:
`int_(pi/2)^(pi/2) sin^7 x dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) (sin x - cos x)/(1+sinx cos x) dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^pi log(1+ cos x) dx`
Show that `int_0^a f(x)g (x)dx = 2 int_0^a f(x) dx` if f and g are defined as f(x) = f(a-x) and g(x) + g(a-x) = 4.
\[\int\limits_0^a 3 x^2 dx = 8,\] find the value of a.
Evaluate : `int 1/sqrt("x"^2 - 4"x" + 2) "dx"`
The c.d.f, F(x) associated with p.d.f. f(x) = 3(1- 2x2). If 0 < x < 1 is k`(x - (2x^3)/"k")`, then value of k is ______.
`int_0^{pi/2} log(tanx)dx` = ______
`int_(pi/18)^((4pi)/9) (2 sqrt(sin x))/(sqrt (sin x) + sqrt(cos x))` dx = ?
`int_0^{pi/2} cos^2x dx` = ______
If `int_0^"k" "dx"/(2 + 32x^2) = pi/32,` then the value of k is ______.
`int_0^pi sin^2x.cos^2x dx` = ______
`int_0^9 1/(1 + sqrtx)` dx = ______
`int_(-1)^1 (x + x^3)/(9 - x^2) "d"x` = ______.
`int_0^(pi/2) (sin^"n" x"d"x)/(sin^"n" x + cos^"n" x)` = ______.
Evaluate the following:
`int_(-pi/4)^(pi/4) log|sinx + cosx|"d"x`
`int_((-pi)/4)^(pi/4) "dx"/(1 + cos2x)` is equal to ______.
If `int_0^"a" 1/(1 + 4x^2) "d"x = pi/8`, then a = ______.
If `f(a + b - x) = f(x)`, then `int_0^b x f(x) dx` is equal to
`int_(-5)^5 x^7/(x^4 + 10) dx` = ______.
If `int_a^b x^3 dx` = 0, then `(x^4/square)_a^b` = 0
⇒ `1/4 (square - square)` = 0
⇒ b4 – `square` = 0
⇒ (b2 – a2)(`square` + `square`) = 0
⇒ b2 – `square` = 0 as a2 + b2 ≠ 0
⇒ b = ± `square`
The value of the integral `int_0^sqrt(2)([sqrt(2 - x^2)] + 2x)dx` (where [.] denotes greatest integer function) is ______.
Let f be continuous periodic function with period 3, such that `int_0^3f(x)dx` = 1. Then the value of `int_-4^8f(2x)dx` is ______.
If f(x) = `{{:(x^2",", "where" 0 ≤ x < 1),(sqrt(x)",", "when" 1 ≤ x < 2):}`, then `int_0^2f(x)dx` equals ______.
Evaluate: `int_0^π 1/(5 + 4 cos x)dx`
`int_((-π)/2)^(π/2) log((2 - sinx)/(2 + sinx))` is equal to ______.
Evaluate: `int_1^3 sqrt(x + 5)/(sqrt(x + 5) + sqrt(9 - x))dx`
Evaluate `int_1^2(x+3)/(x(x+2)) dx`
`int_-9^9 x^3/(4-x^2) dx` =______
Evaluate the following integral:
`int_0^1x (1 - x)^5 dx`
Evaluate the following integral:
`int_-9^9 x^3/(4 - x^2) dx`
Evaluate the following integral:
`int_0^1x(1 - x)^5dx`