Advertisements
Advertisements
प्रश्न
Evaluate the following integral:
`int_0^1 x(1 - x)^5 *dx`
उत्तर
Let I = `int_0^1 x(1 - x)^5 *dx`
= `int_0^1 (1 - x)[1 - (1 - x)]^5*dx ...[because int_0^"a" f(x)*dx = int_0^"a" f("a" - x)*dx]`
= `int_0^1 (1 - x)x^5*dx`
= `int_0^1(x^5 - x^6)*dx`
= `int_0^1 x^5*dx - int_0^1 x^6*dx`
= `[(x^6)/6]_0^1 - [(x^7)/7]_0^1`
= `(1)/(6) (1^6 - 0) - (1)/(7) (1^7 - 0)`
= `(1)/(6) - (1)/(7)`
∴ I = `(1)/(42)`
Notes
The textbook answer is incorrect. Answer given in the textbook is `1/4^2`. However, as per our calculation, it is `1/42`.
APPEARS IN
संबंधित प्रश्न
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) sqrt(sinx)/(sqrt(sinx) + sqrt(cos x)) dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) (2log sin x - log sin 2x)dx`
By using the properties of the definite integral, evaluate the integral:
`int_((-pi)/2)^(pi/2) sin^2 x dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^a sqrtx/(sqrtx + sqrt(a-x)) dx`
Prove that `int_0^af(x)dx=int_0^af(a-x) dx`
hence evaluate `int_0^(pi/2)sinx/(sinx+cosx) dx`
Evaluate `int_0^(pi/2) cos^2x/(1+ sinx cosx) dx`
\[\int\limits_0^k \frac{1}{2 + 8 x^2} dx = \frac{\pi}{16},\] find the value of k.
Evaluate : \[\int(3x - 2) \sqrt{x^2 + x + 1}dx\] .
Evaluate`int (1)/(x(3+log x))dx`
Evaluate : `int 1/sqrt("x"^2 - 4"x" + 2) "dx"`
`int_0^2 e^x dx` = ______.
`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x)) dx` = ______.
State whether the following statement is True or False:
`int_(-5)^5 x/(x^2 + 7) "d"x` = 10
`int (cos x + x sin x)/(x(x + cos x))`dx = ?
The c.d.f, F(x) associated with p.d.f. f(x) = 3(1- 2x2). If 0 < x < 1 is k`(x - (2x^3)/"k")`, then value of k is ______.
`int_0^{pi/2} log(tanx)dx` = ______
`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________
The value of `int_2^7 (sqrtx)/(sqrt(9 - x) + sqrtx)dx` is ______
Find `int_0^(pi/4) sqrt(1 + sin 2x) "d"x`
`int_(-1)^1 (x^3 + |x| + 1)/(x^2 + 2|x| + 1) "d"x` is equal to ______.
`int_0^(pi/2) sqrt(1 - sin2x) "d"x` is equal to ______.
If `f(a + b - x) = f(x)`, then `int_0^b x f(x) dx` is equal to
If `int_a^b x^3 dx` = 0, then `(x^4/square)_a^b` = 0
⇒ `1/4 (square - square)` = 0
⇒ b4 – `square` = 0
⇒ (b2 – a2)(`square` + `square`) = 0
⇒ b2 – `square` = 0 as a2 + b2 ≠ 0
⇒ b = ± `square`
If `intxf(x)dx = (f(x))/2` then f(x) = ex.
The value of `int_((-1)/sqrt(2))^(1/sqrt(2)) (((x + 1)/(x - 1))^2 + ((x - 1)/(x + 1))^2 - 2)^(1/2)`dx is ______.
If `β + 2int_0^1x^2e^(-x^2)dx = int_0^1e^(-x^2)dx`, then the value of β is ______.
Evaluate `int_-1^1 |x^4 - x|dx`.
Assertion (A): `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x))dx` = 3.
Reason (R): `int_a^b f(x) dx = int_a^b f(a + b - x) dx`.
Evaluate: `int_(-π//4)^(π//4) (cos 2x)/(1 + cos 2x)dx`.
Evaluate : `int_-1^1 log ((2 - x)/(2 + x))dx`.
Evaluate: `int_0^(π/4) log(1 + tanx)dx`.
If `int_0^1(3x^2 + 2x+a)dx = 0,` then a = ______
Evaluate the following definite integral:
`int_1^3 log x dx`
Evaluate the following integral:
`int_0^1x (1 - x)^5 dx`
Evaluate:
`int_0^1 |2x + 1|dx`
Evaluate the following integral:
`int_-9^9 x^3/(4 - x^2) dx`