हिंदी

Evaluate the following integral: ∫01x(1-x)5⋅dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following integral:

`int_0^1 x(1 - x)^5 *dx`

मूल्यांकन

उत्तर

Let I = `int_0^1 x(1 - x)^5 *dx`

= `int_0^1 (1 - x)[1 - (1 - x)]^5*dx     ...[because int_0^"a" f(x)*dx = int_0^"a" f("a" - x)*dx]`

= `int_0^1 (1 - x)x^5*dx`

= `int_0^1(x^5 - x^6)*dx`

= `int_0^1 x^5*dx - int_0^1 x^6*dx`

= `[(x^6)/6]_0^1 - [(x^7)/7]_0^1`

= `(1)/(6) (1^6 - 0) - (1)/(7) (1^7 - 0)`

= `(1)/(6) - (1)/(7)`

∴ I = `(1)/(42)`

shaalaa.com

Notes

The textbook answer is incorrect. Answer given in the textbook is `1/4^2`. However, as per our calculation, it is `1/42`.

  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Definite Integration - EXERCISE 6.2 [पृष्ठ १४८]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 6 Definite Integration
EXERCISE 6.2 | Q 8) | पृष्ठ १४८

संबंधित प्रश्न

By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2)  sqrt(sinx)/(sqrt(sinx) + sqrt(cos x)) dx` 


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2) (2log sin x - log sin 2x)dx`


By using the properties of the definite integral, evaluate the integral:

`int_((-pi)/2)^(pi/2) sin^2 x  dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^a  sqrtx/(sqrtx + sqrt(a-x))   dx`


Prove that `int_0^af(x)dx=int_0^af(a-x) dx`

hence evaluate `int_0^(pi/2)sinx/(sinx+cosx) dx`


Evaluate `int_0^(pi/2) cos^2x/(1+ sinx cosx) dx`


\[\int\limits_0^k \frac{1}{2 + 8 x^2} dx = \frac{\pi}{16},\] find the value of k.


\[\int_\pi^\frac{3\pi}{2} \sqrt{1 - \cos2x}dx\]

Evaluate : \[\int(3x - 2) \sqrt{x^2 + x + 1}dx\] .


Evaluate`int (1)/(x(3+log x))dx` 


Evaluate :  `int 1/sqrt("x"^2 - 4"x" + 2) "dx"`


`int_0^2 e^x dx` = ______.


`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))  dx` = ______.


State whether the following statement is True or False:

`int_(-5)^5 x/(x^2 + 7)  "d"x` = 10


`int (cos x + x sin x)/(x(x + cos x))`dx = ?


The c.d.f, F(x) associated with p.d.f. f(x) = 3(1- 2x2). If 0 < x < 1 is k`(x - (2x^3)/"k")`, then value of k is ______.


`int_0^{pi/2} log(tanx)dx` = ______


`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________


The value of `int_2^7 (sqrtx)/(sqrt(9 - x) + sqrtx)dx` is ______ 


Find `int_0^(pi/4) sqrt(1 + sin 2x) "d"x`


`int_(-1)^1 (x^3 + |x| + 1)/(x^2 + 2|x| + 1) "d"x` is equal to ______.


`int_0^(pi/2) sqrt(1 - sin2x)  "d"x` is equal to ______.


If `f(a + b - x) = f(x)`, then `int_0^b x f(x)  dx` is equal to


If `int_a^b x^3 dx` = 0, then `(x^4/square)_a^b` = 0

⇒ `1/4 (square - square)` = 0

⇒ b4 – `square` = 0

⇒ (b2 – a2)(`square` + `square`) = 0

⇒ b2 – `square` = 0 as a2 + b2 ≠ 0

⇒ b = ± `square`


If `intxf(x)dx = (f(x))/2` then f(x) = ex.


The value of `int_((-1)/sqrt(2))^(1/sqrt(2)) (((x + 1)/(x - 1))^2 + ((x - 1)/(x + 1))^2 - 2)^(1/2)`dx is ______.


If `β + 2int_0^1x^2e^(-x^2)dx = int_0^1e^(-x^2)dx`, then the value of β is ______.


Evaluate `int_-1^1 |x^4 - x|dx`.


Assertion (A): `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x))dx` = 3.

Reason (R): `int_a^b f(x) dx = int_a^b f(a + b - x) dx`.


Evaluate: `int_(-π//4)^(π//4) (cos 2x)/(1 + cos 2x)dx`.


Evaluate : `int_-1^1 log ((2 - x)/(2 + x))dx`.


Evaluate: `int_0^(π/4) log(1 + tanx)dx`.


If `int_0^1(3x^2 + 2x+a)dx = 0,` then a = ______


Evaluate the following definite integral:

`int_1^3 log x  dx`


Evaluate the following integral:

`int_0^1x (1 - x)^5 dx`


Evaluate:

`int_0^1 |2x + 1|dx`


Evaluate the following integral:

`int_-9^9 x^3/(4 - x^2) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×