हिंदी

Evaluate `Int_0^(Pi/2) Cos^2x/(1+ Sinx Cosx) Dx` - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate `int_0^(pi/2) cos^2x/(1+ sinx cosx) dx`

उत्तर

`I = int_0^(pi/2) cos^2 x/(1 + sinxcosx)dx`   ....(1)

Using `int_0^a f(x) dx = int_0^a f(a -x) dx`

`I  = int_0^(pi/2) (cos^2 (pi/2 - x))/(1 + sin(pi/2 -x)cos(pi/2 -x)) dx`

`= int_0^(pi/2) (sin^2 x)/(1+cos x.sin x) dx`  .....(2)

Adding eq. (1) & (2)

`2I = int_0^(pi/2) (cos^2x + sin^2 x)/(1+sin xcos x) dx`

`= int_0^(pi/2) 1/(1+sinxcos x) dx``

`= int_0^(pi/2) (sec^2x) /(sec^2x + tan x) dx`

`2I = int_0^(pi/2) (sec^2 x dx)/(1+tan^2 x + tan x)`

Put `tan x = t, sec^2xdx = dt`

when x = 0, t = 0

when `s = pi/2, t = oo`

`2I = int_0^(oo) (dt)/(t^2 + 2t. 1/2+1/4 1/4 + 1)`

`= int_0^(oo)  (dt)/((t+1/2)^2 + ((sqrt3)/2)^2`

`= 1/(sqrt3/2) [tan^(-1) ((t+1/2)/(sqrt3/2))]_0^oo`

`= 2/sqrt3 tan^(-1) [(2t + 1)/sqrt3]_0^oo`

`2I = 2/sqrt3 [pi/2 - pi/6]`

`I = 1/sqrt3[(3pi - pi)/6]`

` = 1/sqrt3 [(2pi)/6] = pi/(3sqrt3)`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2017-2018 (March) Set 1

संबंधित प्रश्न

If `int_0^alpha3x^2dx=8` then the value of α is :

(a) 0

(b) -2

(c) 2 

(d) ±2


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2) sin^(3/2)x/(sin^(3/2)x + cos^(3/2) x) dx`


By using the properties of the definite integral, evaluate the integral:

`int_((-pi)/2)^(pi/2) sin^2 x  dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^a  sqrtx/(sqrtx + sqrt(a-x))   dx`


\[\int_\pi^\frac{3\pi}{2} \sqrt{1 - \cos2x}dx\]

If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that

\[\int_a^b xf\left( x \right)dx = \left( \frac{a + b}{2} \right) \int_a^b f\left( x \right)dx\]

Prove that `int _a^b f(x) dx = int_a^b f (a + b -x ) dx`  and hence evaluate   `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tan x))` .   


Evaluate the following integral:

`int_0^1 x(1 - x)^5 *dx`


`int_0^2 e^x dx` = ______.


State whether the following statement is True or False:

`int_(-5)^5 x/(x^2 + 7)  "d"x` = 10


`int (cos x + x sin x)/(x(x + cos x))`dx = ?


`int_"a"^"b" sqrtx/(sqrtx + sqrt("a" + "b" - x)) "dx"` = ______.


`int_0^(pi/2) sqrt(cos theta) * sin^2 theta "d" theta` = ______.


`int_0^{pi/2} cos^2x  dx` = ______ 


`int_0^1 "dx"/(sqrt(1 + x) - sqrtx)` = ?


Evaluate: `int_((-π)/2)^(π/2) (sin|x| + cos|x|)dx`


`int_a^b f(x)dx` = ______.


Let f be a real valued continuous function on [0, 1] and f(x) = `x + int_0^1 (x - t)f(t)dt`. Then, which of the following points (x, y) lies on the curve y = f(x)?


If `int_(-a)^a(|x| + |x - 2|)dx` = 22, (a > 2) and [x] denotes the greatest integer ≤ x, then `int_a^(-a)(x + [x])dx` is equal to ______.


If `int_0^K dx/(2 + 18x^2) = π/24`, then the value of K is ______.


If `int_0^(π/2) log cos x  dx = π/2 log(1/2)`, then `int_0^(π/2) log sec dx` = ______.


Evaluate: `int_0^(π/4) log(1 + tanx)dx`.


Evaluate the following integral:

`int_0^1 x(1 - 5)^5`dx


Evaluate:

`int_0^1 |2x + 1|dx`


Solve the following.

`int_0^1 e^(x^2) x^3dx`


Evaluate the following integrals:

`int_-9^9 x^3/(4 - x^3 ) dx`


Evaluate the following integral:

`int_-9^9x^3/(4-x^2)dx`


Evaluate the following definite intergral:

`int_1^3logx  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×