Advertisements
Advertisements
प्रश्न
If `int_0^alpha3x^2dx=8` then the value of α is :
(a) 0
(b) -2
(c) 2
(d) ±2
उत्तर
(c)
`int_0^alpha3x^2dx=8`
⇒ `[(3x^3)/3]_0^alpha=8`
⇒ `[x^3]_0^alpha=8`
⇒ α3=8
∴ α = 2
APPEARS IN
संबंधित प्रश्न
Evaluate : `int e^x[(sqrt(1-x^2)sin^-1x+1)/(sqrt(1-x^2))]dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) sqrt(sinx)/(sqrt(sinx) + sqrt(cos x)) dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) sin^(3/2)x/(sin^(3/2)x + cos^(3/2) x) dx`
\[\int\limits_0^k \frac{1}{2 + 8 x^2} dx = \frac{\pi}{16},\] find the value of k.
Evaluate : `int _0^(pi/2) "sin"^ 2 "x" "dx"`
Evaluate : `int "x"^2/("x"^4 + 5"x"^2 + 6) "dx"`
Evaluate = `int (tan x)/(sec x + tan x)` . dx
Using properties of definite integrals, evaluate
`int_0^(π/2) sqrt(sin x )/ (sqrtsin x + sqrtcos x)dx`
Prove that `int_0^"a" "f" ("x") "dx" = int_0^"a" "f" ("a" - "x") "d x",` hence evaluate `int_0^pi ("x" sin "x")/(1 + cos^2 "x") "dx"`
`int_0^1 (1 - x/(1!) + x^2/(2!) - x^3/(3!) + ... "upto" ∞)` e2x dx = ?
`int_0^{pi/2}((3sqrtsecx)/(3sqrtsecx + 3sqrt(cosecx)))dx` = ______
`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________
f(x) = `{:{(x^3/k; 0 ≤ x ≤ 2), (0; "otherwise"):}` is a p.d.f. of X. The value of k is ______
`int_0^{1/sqrt2} (sin^-1x)/(1 - x^2)^{3/2} dx` = ______
`int_0^{pi/2} (cos2x)/(cosx + sinx)dx` = ______
`int_0^pi x sin^2x dx` = ______
`int_0^9 1/(1 + sqrtx)` dx = ______
Evaluate `int_(-1)^2 "f"(x) "d"x`, where f(x) = |x + 1| + |x| + |x – 1|
`int_0^(2"a") "f"(x) "d"x = 2int_0^"a" "f"(x) "d"x`, if f(2a – x) = ______.
Evaluate the following:
`int_0^(pi/2) "dx"/(("a"^2 cos^2x + "b"^2 sin^2 x)^2` (Hint: Divide Numerator and Denominator by cos4x)
Evaluate:
`int_2^8 (sqrt(10 - "x"))/(sqrt"x" + sqrt(10 - "x")) "dx"`
The value of `int_0^1 tan^-1 ((2x - 1)/(1 + x - x^2)) dx` is
Evaluate: `int_(-1)^3 |x^3 - x|dx`
Evaluate: `int_((-π)/2)^(π/2) (sin|x| + cos|x|)dx`
`int_0^1 1/(2x + 5) dx` = ______.
If `int_(-a)^a(|x| + |x - 2|)dx` = 22, (a > 2) and [x] denotes the greatest integer ≤ x, then `int_a^(-a)(x + [x])dx` is equal to ______.
The integral `int_0^2||x - 1| -x|dx` is equal to ______.
Let `int ((x^6 - 4)dx)/((x^6 + 2)^(1/4).x^4) = (ℓ(x^6 + 2)^m)/x^n + C`, then `n/(ℓm)` is equal to ______.
The value of the integral `int_0^1 x cot^-1(1 - x^2 + x^4)dx` is ______.
What is `int_0^(π/2)` sin 2x ℓ n (cot x) dx equal to ?
`int_0^(π/2)((root(n)(secx))/(root(n)(secx + root(n)("cosec" x))))dx` is equal to ______.
Evaluate: `int_1^3 sqrt(x + 5)/(sqrt(x + 5) + sqrt(9 - x))dx`
`int_-9^9 x^3/(4-x^2) dx` =______
Evaluate the following integral:
`int_-9^9 x^3 / (4 - x^2) dx`
Evaluate the following integral:
`int_0^1 x(1 - x)^5 dx`
Evaluate the following definite intergral:
`int_1^2 (3x)/(9x^2 - 1) dx`
Evaluate:
`int_0^sqrt(2)[x^2]dx`