हिंदी

By using the properties of the definite integral, evaluate the integral: ∫0π2 sinxsinx+cosxdx - Mathematics

Advertisements
Advertisements

प्रश्न

By using the properties of the definite integral, evaluate the integral:

0π2 sinxsinx+cosxdx 

योग

उत्तर

Let I=0π2sinxsinx+cosx dx     ...(i)

Replace x to (π2-x) in (i)

[0af(x)dx=0af(a-x)dx]

I=0π2sin(π2-x)sin(π2-x)+cos(π2-x) dx

I=0π2cosxcosx+sinx dx       ...(ii)

Adding (i) and (ii), we get

2I=0π2[sinxsinx+cosx+cosxcosx+sinx] dx 

=0π2cosx+sinxcosx+sinx

=0π2dx=[x]0π2

=π2-0

=π2

I=π4

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Integrals - Exercise 7.11 [पृष्ठ ३४७]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 7 Integrals
Exercise 7.11 | Q 2 | पृष्ठ ३४७

संबंधित प्रश्न

Evaluate : ex[1-x2sin-1x+11-x2]dx


By using the properties of the definite integral, evaluate the integral:

0π2cos2xdx


By using the properties of the definite integral, evaluate the integral:

-π2π2sin2x dx


By using the properties of the definite integral, evaluate the integral:

0π2sinx-cosx1+sinxcosxdx


Show that 0af(x)g(x)dx=20af(x)dx  if f and g are defined as f(x) = f(a-x) and g(x) + g(a-x) = 4.


The value of 0π2log (4+3sinx4+3cosx) dx is ______.


491xdx=_____

(A) 1

(B) –2

(C) 2

(D) –1


Evaluate 0π2cos2x1+sinxcosxdx


Evaluate : 1x[(log x)2+4] dx


Evaluate  : x2x4+5x2+6dx


Evaluate :  ∫ log (1 + x2) dx


-77x3x2+7 dx = ______


01(1-x1!+x22!-x33!+...upto) e2x dx = ?


0π4sin2xsin4x+cos4xdx = ____________


0π4sin2xsin4x+cos4xdx = ____________


012sin-1x(1-x2)32dx = ______ 


If 0kdx2+32x2=π32, then the value of k is ______.


Which of the following is true?


01e5logxdx = ______.


Evaluate 0π2tan7xcot7x+tan7xdx


-11x3+|x|+1x2+2|x|+1dx is equal to ______.


-22|xcosπx|dx is equal to ______.


0π2 cosxesinx dx is equal to ______.


If (logx)2xdx=(logx)kk+c, then the value of k is:


Evaluate: 13xx+4-xdx


491xdx = ______.


If xf(x)dx=f(x)2 then f(x) = ex.


Let f be a real valued continuous function on [0, 1] and f(x) = x+01(x-t)f(t)dt. Then, which of the following points (x, y) lies on the curve y = f(x)?


If 01(2x-2x-x2)dx=01(1-1-y2-y22)dy+12(2-y22)dy + I then I equal.


The integral 02||x-1|-x|dx is equal to ______.


0πxsinx1+cos2xdx equals ______.


With the usual notation 12([x2]-[x]2)dx is equal to ______.


Evaluate the following limit :

limx3[x+6x]


Evaluate 12x+3x(x+2) dx


Evaluate the following integral:

01x(1-x)5dx


Evaluate the following integral:

-99x34-x2dx


Evaluate the following integral:

-99x34-x2dx


Evaluate the following integral:

01x(1-x)5dx


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.