हिंदी

Evaluate: ∫13xx+4-xdx - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate: `int_1^3 sqrt(x)/(sqrt(x) + sqrt(4) - x) dx`

योग

उत्तर

Let I = `int_1^3 sqrt(x)/(sqrt(x) + sqrt(4) - x)`  ...(i)

Using property `int_a^b f(x)dx = int_a^b f(a + b - x)dx`, we get

I = `int_1^3 sqrt(4 - x)/(sqrt(4 - x) + sqrt(x))dx`  ...(ii)

On adding equations (i) and (ii}, we get

2I = `int_1^3 (sqrt(x) + sqrt(4 - x))/(sqrt(x) + sqrt(4 - x))dx`

= `int_1^3 1dx`

= `[x]_1^3`

= 3 – 1 = 2

∴ I = 1

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2021-2022 (April) Term 2 - Delhi Set 3

संबंधित प्रश्न

By using the properties of the definite integral, evaluate the integral:

`int_2^8 |x - 5| dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^pi (x  dx)/(1+ sin x)`


By using the properties of the definite integral, evaluate the integral:

`int_0^4 |x - 1| dx`


\[\int\limits_0^k \frac{1}{2 + 8 x^2} dx = \frac{\pi}{16},\] find the value of k.


Evaluate : `int _0^(pi/2) "sin"^ 2  "x"  "dx"`


Evaluate : `int  "e"^(3"x")/("e"^(3"x") + 1)` dx


Evaluate  : `int "x"^2/("x"^4 + 5"x"^2 + 6) "dx"`


Evaluate `int_0^1 x(1 - x)^5  "d"x`


`int_2^3 x/(x^2 - 1)` dx = ______


`int_(pi/18)^((4pi)/9) (2 sqrt(sin x))/(sqrt (sin x) + sqrt(cos x))` dx = ?


`int_3^9 x^3/((12 - x)^3 + x^3)` dx = ______ 


`int_0^{1/sqrt2} (sin^-1x)/(1 - x^2)^{3/2} dx` = ______ 


`int_0^{pi/2} (cos2x)/(cosx + sinx)dx` = ______


`int_0^(2"a") "f"(x) "d"x = 2int_0^"a" "f"(x) "d"x`, if f(2a – x) = ______.


Evaluate:

`int_2^8 (sqrt(10 - "x"))/(sqrt"x" + sqrt(10 - "x")) "dx"`


`int (dx)/(e^x + e^(-x))` is equal to ______.


`int_a^b f(x)dx = int_a^b f(x - a - b)dx`.


Let f be a real valued continuous function on [0, 1] and f(x) = `x + int_0^1 (x - t)f(t)dt`. Then, which of the following points (x, y) lies on the curve y = f(x)?


If `lim_("n"→∞)(int_(1/("n"+1))^(1/"n") tan^-1("n"x)"d"x)/(int_(1/("n"+1))^(1/"n") sin^-1("n"x)"d"x) = "p"/"q"`, (where p and q are coprime), then (p + q) is ______.


Evaluate: `int_1^3 sqrt(x + 5)/(sqrt(x + 5) + sqrt(9 - x))dx`


If `int_0^(2π) cos^2 x  dx = k int_0^(π/2) cos^2 x  dx`, then the value of k is ______.


Evaluate: `int_0^(π/4) log(1 + tanx)dx`.


If `int_0^1(3x^2 + 2x+a)dx = 0,` then a = ______


Evaluate:

`int_0^1 |2x + 1|dx`


Evaluate the following integral:

`int_-9^9 x^3/(4 - x^2) dx`


Evaluate the following integral:

`int_-9^9 x^3 / (4 - x^2) dx`


Evaluate the following integral:

`int_0^1 x(1-x)^5 dx`


Evaluate the following integral:

`int_0^1x(1 - x)^5dx`


Evaluate the following definite intergral:

`int_1^3logx  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×