Advertisements
Advertisements
प्रश्न
Evaluate: `int_1^3 sqrt(x)/(sqrt(x) + sqrt(4) - x) dx`
उत्तर
Let I = `int_1^3 sqrt(x)/(sqrt(x) + sqrt(4) - x)` ...(i)
Using property `int_a^b f(x)dx = int_a^b f(a + b - x)dx`, we get
I = `int_1^3 sqrt(4 - x)/(sqrt(4 - x) + sqrt(x))dx` ...(ii)
On adding equations (i) and (ii}, we get
2I = `int_1^3 (sqrt(x) + sqrt(4 - x))/(sqrt(x) + sqrt(4 - x))dx`
= `int_1^3 1dx`
= `[x]_1^3`
= 3 – 1 = 2
∴ I = 1
APPEARS IN
संबंधित प्रश्न
Evaluate : `intlogx/(1+logx)^2dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) (cos^5 xdx)/(sin^5 x + cos^5 x)`
By using the properties of the definite integral, evaluate the integral:
`int_0^1 x(1-x)^n dx`
By using the properties of the definite integral, evaluate the integral:
`int_(pi/2)^(pi/2) sin^7 x dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^a sqrtx/(sqrtx + sqrt(a-x)) dx`
`int_(-pi/2)^(pi/2) (x^3 + x cos x + tan^5 x + 1) dx ` is ______.
Evaluate the definite integrals `int_0^pi (x tan x)/(sec x + tan x)dx`
\[\int\limits_0^a 3 x^2 dx = 8,\] find the value of a.
`int_0^1 "e"^(2x) "d"x` = ______
`int_2^4 x/(x^2 + 1) "d"x` = ______
`int_-2^1 dx/(x^2 + 4x + 13)` = ______
Evaluate `int_0^(pi/2) (tan^7x)/(cot^7x + tan^7x) "d"x`
Evaluate `int_(-1)^2 "f"(x) "d"x`, where f(x) = |x + 1| + |x| + |x – 1|
`int_(-1)^1 (x^3 + |x| + 1)/(x^2 + 2|x| + 1) "d"x` is equal to ______.
If `int_0^1 "e"^"t"/(1 + "t") "dt"` = a, then `int_0^1 "e"^"t"/(1 + "t")^2 "dt"` is equal to ______.
Evaluate the following:
`int_0^(pi/2) "dx"/(("a"^2 cos^2x + "b"^2 sin^2 x)^2` (Hint: Divide Numerator and Denominator by cos4x)
If `int (log "x")^2/"x" "dx" = (log "x")^"k"/"k" + "c"`, then the value of k is:
Evaluate:
`int_2^8 (sqrt(10 - "x"))/(sqrt"x" + sqrt(10 - "x")) "dx"`
Evaluate: `int_0^(2π) (1)/(1 + e^(sin x)`dx
Let f be a real valued continuous function on [0, 1] and f(x) = `x + int_0^1 (x - t)f(t)dt`. Then, which of the following points (x, y) lies on the curve y = f(x)?
If `int_(-a)^a(|x| + |x - 2|)dx` = 22, (a > 2) and [x] denotes the greatest integer ≤ x, then `int_a^(-a)(x + [x])dx` is equal to ______.
The value of `int_((-1)/sqrt(2))^(1/sqrt(2)) (((x + 1)/(x - 1))^2 + ((x - 1)/(x + 1))^2 - 2)^(1/2)`dx is ______.
If `lim_("n"→∞)(int_(1/("n"+1))^(1/"n") tan^-1("n"x)"d"x)/(int_(1/("n"+1))^(1/"n") sin^-1("n"x)"d"x) = "p"/"q"`, (where p and q are coprime), then (p + q) is ______.
Evaluate: `int_0^π 1/(5 + 4 cos x)dx`
`int_(π/3)^(π/2) x sin(π[x] - x)dx` is equal to ______.
`int_0^(π/4) x. sec^2 x dx` = ______.
Evaluate the following definite integral:
`int_1^3 log x dx`
Evaluate the following integral:
`int_0^1x(1-x)^5dx`
Evaluate:
`int_0^sqrt(2)[x^2]dx`