Advertisements
Advertisements
प्रश्न
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) (cos^5 xdx)/(sin^5 x + cos^5 x)`
उत्तर
Let `I = int_0^(pi/2) (cos^5 x)/ (sin^5 x + cos ^5 x) dx` ....(i)
Also, `I = int_0^(pi/2) (cos^5 (pi/2 - x))/(sin^5 (pi/2 - x) + cos^5 (pi/2 - x)) dx`
`[∵ int_0^a f (x) dx = int_0^a f (a - x) dx]`
`= int_0^(pi/2) (sin^5 x)/ (cos^5x + sin^5 x) dx` ....(ii)
Adding (i) and (ii), we have
`2 I = int_0^(pi/2) (cos^5x)/(cos^5x + sin^5 x) dx + int_0^(pi/2) (sin^5x)/ (cos^5 x + sin^5 x) dx`
`= int_0^(pi/2) (cos^5 x + sin^5 x)/ (cos^5 x + sin^5 x) dx`
`= int_0^(pi/2) 1 dx = [x]_0^(pi/2) = pi/2`
Hence, `I = pi/4`
APPEARS IN
संबंधित प्रश्न
Evaluate : `intlogx/(1+logx)^2dx`
By using the properties of the definite integral, evaluate the integral:
`int_2^8 |x - 5| dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^2 xsqrt(2 -x)dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) (2log sin x - log sin 2x)dx`
Show that `int_0^a f(x)g (x)dx = 2 int_0^a f(x) dx` if f and g are defined as f(x) = f(a-x) and g(x) + g(a-x) = 4.
Evaluate `int_0^(pi/2) cos^2x/(1+ sinx cosx) dx`
Evaluate`int (1)/(x(3+log x))dx`
Evaluate : `int "e"^(3"x")/("e"^(3"x") + 1)` dx
`int_"a"^"b" "f"(x) "d"x` = ______
Choose the correct alternative:
`int_(-9)^9 x^3/(4 - x^2) "d"x` =
State whether the following statement is True or False:
`int_(-5)^5 x/(x^2 + 7) "d"x` = 10
`int_0^1 (1 - x/(1!) + x^2/(2!) - x^3/(3!) + ... "upto" ∞)` e2x dx = ?
The value of `int_-3^3 ("a"x^5 + "b"x^3 + "c"x + "k")"dx"`, where a, b, c, k are constants, depends only on ______.
`int_2^3 x/(x^2 - 1)` dx = ______
f(x) = `{:{(x^3/k; 0 ≤ x ≤ 2), (0; "otherwise"):}` is a p.d.f. of X. The value of k is ______
`int_-2^1 dx/(x^2 + 4x + 13)` = ______
`int_0^1 "dx"/(sqrt(1 + x) - sqrtx)` = ?
`int_0^1 log(1/x - 1) "dx"` = ______.
`int_0^(pi/2) 1/(1 + cosx) "d"x` = ______.
`int_(-pi/4)^(pi/4) 1/(1 - sinx) "d"x` = ______.
Evaluate `int_(-1)^2 "f"(x) "d"x`, where f(x) = |x + 1| + |x| + |x – 1|
`int_(-1)^1 (x^3 + |x| + 1)/(x^2 + 2|x| + 1) "d"x` is equal to ______.
Evaluate the following:
`int_(-pi/4)^(pi/4) log|sinx + cosx|"d"x`
Evaluate:
`int_2^8 (sqrt(10 - "x"))/(sqrt"x" + sqrt(10 - "x")) "dx"`
`int_(-5)^5 x^7/(x^4 + 10) dx` = ______.
`int_0^1 1/(2x + 5) dx` = ______.
Evaluate: `int_2^5 sqrt(x)/(sqrt(x) + sqrt(7) - x)dx`
If `int_a^b x^3 dx` = 0, then `(x^4/square)_a^b` = 0
⇒ `1/4 (square - square)` = 0
⇒ b4 – `square` = 0
⇒ (b2 – a2)(`square` + `square`) = 0
⇒ b2 – `square` = 0 as a2 + b2 ≠ 0
⇒ b = ± `square`
`int_a^b f(x)dx = int_a^b f(x - a - b)dx`.
`int_0^5 cos(π(x - [x/2]))dx` where [t] denotes greatest integer less than or equal to t, is equal to ______.
The value of the integral `int_0^sqrt(2)([sqrt(2 - x^2)] + 2x)dx` (where [.] denotes greatest integer function) is ______.
Evaluate: `int_1^3 sqrt(x + 5)/(sqrt(x + 5) + sqrt(9 - x))dx`
Assertion (A): `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x))dx` = 3.
Reason (R): `int_a^b f(x) dx = int_a^b f(a + b - x) dx`.
For any integer n, the value of `int_-π^π e^(cos^2x) sin^3 (2n + 1)x dx` is ______.
Evaluate: `int_0^(π/4) log(1 + tanx)dx`.
Evaluate the following integral:
`int_0^1 x(1-x)^5 dx`
`int_-9^9 x^3/(4-x^2) dx` =______
Evaluate the following definite integral:
`int_-2^3 1/(x + 5) dx`