Advertisements
Advertisements
प्रश्न
Evaluate: `int_2^5 sqrt(x)/(sqrt(x) + sqrt(7) - x)dx`
उत्तर
Let I = `int_2^5 sqrt(x)/(sqrt(x) + sqrt(7) - x).dx` ...(i)
= `int_2^5 (sqrt(2 + 5 - x))/(sqrt(2 + 5 - x) + sqrt(7 - (2 + 5 - x))).dx` ...`[∵ int_a^b f(x)dx = int_a^b f(a + b - x)dx]`
∴ I = `int_2^5 (sqrt(7 - x))/(sqrt(7 - x) + sqrt(x)).dx` ...(ii)
Adding equations (i) and (ii), we get
2I = `int_2^5 sqrt(x)/(sqrt(x) + sqrt(7) - x).dx + int_2^5 sqrt(7 - x)/(sqrt(7 - x) + sqrt(x)).dx`
= `int_2^5 (sqrt(x) + sqrt(7 - x))/(sqrt(x) + sqrt(7 - x)).dx`
= `int_2^5 1.dx`
= `[x]_2^5`
∴ 2I = 5 – 2
2I = 3
I = `3/2`
APPEARS IN
संबंधित प्रश्न
Evaluate: `int_(-a)^asqrt((a-x)/(a+x)) dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) cos^2 x dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) sqrt(sinx)/(sqrt(sinx) + sqrt(cos x)) dx`
By using the properties of the definite integral, evaluate the integral:
`int_((-pi)/2)^(pi/2) sin^2 x dx`
By using the properties of the definite integral, evaluate the integral:
`int_(pi/2)^(pi/2) sin^7 x dx`
Evaluate: `int_1^4 {|x -1|+|x - 2|+|x - 4|}dx`
Evaluate `int_0^(pi/2) cos^2x/(1+ sinx cosx) dx`
Evaluate : `int _0^(pi/2) "sin"^ 2 "x" "dx"`
Evaluate : `int 1/("x" [("log x")^2 + 4]) "dx"`
Using properties of definite integrals, evaluate
`int_0^(π/2) sqrt(sin x )/ (sqrtsin x + sqrtcos x)dx`
`int_"a"^"b" "f"(x) "d"x` = ______
`int_1^2 1/(2x + 3) dx` = ______
Evaluate `int_1^2 (sqrt(x))/(sqrt(3 - x) + sqrt(x)) "d"x`
Evaluate `int_1^3 x^2*log x "d"x`
`int_0^1 ((x^2 - 2)/(x^2 + 1))`dx = ?
`int_2^3 x/(x^2 - 1)` dx = ______
`int_0^{pi/2}((3sqrtsecx)/(3sqrtsecx + 3sqrt(cosecx)))dx` = ______
`int_0^{pi/2} xsinx dx` = ______
`int_"a"^"b" sqrtx/(sqrtx + sqrt("a" + "b" - x)) "dx"` = ______.
`int_3^9 x^3/((12 - x)^3 + x^3)` dx = ______
`int_-2^1 dx/(x^2 + 4x + 13)` = ______
`int_0^1 "dx"/(sqrt(1 + x) - sqrtx)` = ?
If `int_0^"k" "dx"/(2 + 32x^2) = pi/32,` then the value of k is ______.
`int_0^pi sin^2x.cos^2x dx` = ______
`int_(-1)^1 log ((2 - x)/(2 + x)) "dx" = ?`
`int_0^{pi/2} (cos2x)/(cosx + sinx)dx` = ______
`int_0^(pi/2) 1/(1 + cosx) "d"x` = ______.
The value of `int_2^7 (sqrtx)/(sqrt(9 - x) + sqrtx)dx` is ______
`int_0^9 1/(1 + sqrtx)` dx = ______
`int_0^(pi/2) sqrt(1 - sin2x) "d"x` is equal to ______.
`int (dx)/(e^x + e^(-x))` is equal to ______.
The value of `int_0^1 tan^-1 ((2x - 1)/(1 + x - x^2)) dx` is
`int_(-5)^5 x^7/(x^4 + 10) dx` = ______.
`int_a^b f(x)dx = int_a^b f(x - a - b)dx`.
Let f be a real valued continuous function on [0, 1] and f(x) = `x + int_0^1 (x - t)f(t)dt`. Then, which of the following points (x, y) lies on the curve y = f(x)?
If f(x) = `(2 - xcosx)/(2 + xcosx)` and g(x) = logex, (x > 0) then the value of the integral `int_((-π)/4)^(π/4) "g"("f"(x))"d"x` is ______.
`int_0^π(xsinx)/(1 + cos^2x)dx` equals ______.
If f(x) = `{{:(x^2",", "where" 0 ≤ x < 1),(sqrt(x)",", "when" 1 ≤ x < 2):}`, then `int_0^2f(x)dx` equals ______.
Evaluate: `int_0^π 1/(5 + 4 cos x)dx`
`int_(π/3)^(π/2) x sin(π[x] - x)dx` is equal to ______.
Evaluate: `int_1^3 sqrt(x + 5)/(sqrt(x + 5) + sqrt(9 - x))dx`
If `int_0^(2π) cos^2 x dx = k int_0^(π/2) cos^2 x dx`, then the value of k is ______.
Assertion (A): `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x))dx` = 3.
Reason (R): `int_a^b f(x) dx = int_a^b f(a + b - x) dx`.
Evaluate the following limit :
`lim_("x"->3)[sqrt("x"+6)/"x"]`
Evaluate the following integral:
`int_0^1 x(1-x)^5 dx`
Evaluate the following integral:
`int_0^1 x(1 - 5)^5`dx
`int_1^2 x logx dx`= ______
Evaluate:
`int_0^1 |2x + 1|dx`
Solve the following.
`int_0^1 e^(x^2) x^3dx`
Evaluate the following integral:
`int_-9^9x^3/(4-x^2)dx`
Evaluate the following definite intergral:
`int_1^2 (3x)/(9x^2 - 1) dx`
Evaluate the following integral:
`int_0^1x(1-x)^5dx`