Advertisements
Advertisements
प्रश्न
`int_"a"^"b" "f"(x) "d"x` = ______
पर्याय
`int_"b"^"a" "f"(x) "d"x`
`- int_"a"^"b" "f"(x) "d"x`
`- int_"b"^"a" "f"(x) "d"x`
`int_0^"a" "f"(x) "d"x`
उत्तर
`- int_"b"^"a" "f"(x) "d"x`
संबंधित प्रश्न
Evaluate : `intsec^nxtanxdx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) sin^(3/2)x/(sin^(3/2)x + cos^(3/2) x) dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) (cos^5 xdx)/(sin^5 x + cos^5 x)`
By using the properties of the definite integral, evaluate the integral:
`int_0^pi (x dx)/(1+ sin x)`
By using the properties of the definite integral, evaluate the integral:
`int_0^pi log(1+ cos x) dx`
`∫_4^9 1/sqrtxdx=`_____
(A) 1
(B) –2
(C) 2
(D) –1
Prove that `int_0^af(x)dx=int_0^af(a-x) dx`
hence evaluate `int_0^(pi/2)sinx/(sinx+cosx) dx`
\[\int\limits_0^k \frac{1}{2 + 8 x^2} dx = \frac{\pi}{16},\] find the value of k.
\[\int\limits_0^a 3 x^2 dx = 8,\] find the value of a.
Evaluate`int (1)/(x(3+log x))dx`
Evaluate : `int _0^(pi/2) "sin"^ 2 "x" "dx"`
Evaluate : `int 1/("x" [("log x")^2 + 4]) "dx"`
Evaluate : `int "e"^(3"x")/("e"^(3"x") + 1)` dx
Evaluate : `int "x"^2/("x"^4 + 5"x"^2 + 6) "dx"`
Find `dy/dx, if y = cos^-1 ( sin 5x)`
State whether the following statement is True or False:
`int_(-5)^5 x/(x^2 + 7) "d"x` = 10
Evaluate `int_1^3 x^2*log x "d"x`
Evaluate `int_0^1 x(1 - x)^5 "d"x`
`int_0^(pi/4) (sec^2 x)/((1 + tan x)(2 + tan x))`dx = ?
`int_-9^9 x^3/(4 - x^2)` dx = ______
`int_0^{pi/2} xsinx dx` = ______
`int_0^1 (1 - x)^5`dx = ______.
`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________
`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________
`int_0^1 x tan^-1x dx` = ______
`int_-2^1 dx/(x^2 + 4x + 13)` = ______
`int_0^{1/sqrt2} (sin^-1x)/(1 - x^2)^{3/2} dx` = ______
If `int_0^"k" "dx"/(2 + 32x^2) = pi/32,` then the value of k is ______.
`int_0^pi sin^2x.cos^2x dx` = ______
`int_(pi/4)^(pi/2) sqrt(1-sin 2x) dx =` ______.
`int_0^pi x sin^2x dx` = ______
`int_0^9 1/(1 + sqrtx)` dx = ______
`int_0^1 "e"^(5logx) "d"x` = ______.
Evaluate `int_(-1)^2 "f"(x) "d"x`, where f(x) = |x + 1| + |x| + |x – 1|
If `int_0^1 "e"^"t"/(1 + "t") "dt"` = a, then `int_0^1 "e"^"t"/(1 + "t")^2 "dt"` is equal to ______.
`int_0^(pi/2) (sin^"n" x"d"x)/(sin^"n" x + cos^"n" x)` = ______.
`int_0^(pi/2) sqrt(1 - sin2x) "d"x` is equal to ______.
`int_0^(pi/2) cos x "e"^(sinx) "d"x` is equal to ______.
If `int_0^"a" 1/(1 + 4x^2) "d"x = pi/8`, then a = ______.
`int (dx)/(e^x + e^(-x))` is equal to ______.
`int_a^b f(x)dx` = ______.
`int_4^9 1/sqrt(x)dx` = ______.
`int_0^5 cos(π(x - [x/2]))dx` where [t] denotes greatest integer less than or equal to t, is equal to ______.
If `int_0^1(sqrt(2x) - sqrt(2x - x^2))dx = int_0^1(1 - sqrt(1 - y^2) - y^2/2)dy + int_1^2(2 - y^2/2)dy` + I then I equal.
Let `int_0^∞ (t^4dt)/(1 + t^2)^6 = (3π)/(64k)` then k is equal to ______.
Let f be continuous periodic function with period 3, such that `int_0^3f(x)dx` = 1. Then the value of `int_-4^8f(2x)dx` is ______.
If `lim_("n"→∞)(int_(1/("n"+1))^(1/"n") tan^-1("n"x)"d"x)/(int_(1/("n"+1))^(1/"n") sin^-1("n"x)"d"x) = "p"/"q"`, (where p and q are coprime), then (p + q) is ______.
`int_0^(pi/4) (sec^2x)/((1 + tanx)(2 + tanx))dx` equals ______.
The value of the integral `int_0^1 x cot^-1(1 - x^2 + x^4)dx` is ______.
If `int_0^K dx/(2 + 18x^2) = π/24`, then the value of K is ______.
Evaluate the following integral:
`int_0^1 x(1-x)^5 dx`
Solve the following.
`int_1^3 x^2 logx dx`
If `int_0^1(3x^2 + 2x+a)dx = 0,` then a = ______
Evaluate the following definite integral:
`int_-2^3 1/(x + 5) dx`
Evaluate the following integral:
`int_0^1x (1 - x)^5 dx`
Evaluate the following integral:
`int_-9^9 x^3 / (4 - x^2) dx`
Solve the following.
`int_2^3x/((x+2)(x+3))dx`
Evaluate the following integral:
`int_0^1x(1-x)^5dx`
Evaluate the following definite intergral:
`int_1^3logx dx`