मराठी

Ed∫0π2 cosxesinx dx is equal to ______. - Mathematics

Advertisements
Advertisements

प्रश्न

`int_0^(pi/2)  cos x "e"^(sinx)  "d"x` is equal to ______.

रिकाम्या जागा भरा

उत्तर

`int_0^(pi/2)  cos x "e"^(sinx)  "d"x` is equal to e – 1.

Explanation:

Let I = `int_0^(pi/2)  cos x "e"^(sinx)  "d"x` 

Put sin x = t

⇒ cos x "d"x` = dt

∴ I = `int_0^1 "e"^"t"  "dt"`

= `["e"^"t"]_0^1`

= `"e"^1 - "e"^0`

= e – 1

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Integrals - Exercise [पृष्ठ १६९]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 7 Integrals
Exercise | Q 59 | पृष्ठ १६९

संबंधित प्रश्‍न

Prove that: `int_0^(2a)f(x)dx=int_0^af(x)dx+int_0^af(2a-x)dx`


By using the properties of the definite integral, evaluate the integral:

`int_(-5)^5 | x + 2| dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2) (sin x - cos x)/(1+sinx cos x) dx`


Show that `int_0^a f(x)g (x)dx = 2 int_0^a f(x) dx`  if f and g are defined as f(x) = f(a-x) and g(x) + g(a-x) = 4.


Evaluate the definite integrals `int_0^pi (x tan x)/(sec x + tan x)dx`


Evaluate : \[\int(3x - 2) \sqrt{x^2 + x + 1}dx\] .


Prove that `int _a^b f(x) dx = int_a^b f (a + b -x ) dx`  and hence evaluate   `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tan x))` .   


State whether the following statement is True or False:

`int_(-5)^5 x/(x^2 + 7)  "d"x` = 10


By completing the following activity, Evaluate `int_2^5 (sqrt(x))/(sqrt(x) + sqrt(7 - x))  "d"x`.

Solution: Let I = `int_2^5 (sqrt(x))/(sqrt(x) + sqrt(7 - x))  "d"x`     ......(i)

Using the property, `int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x)  "d"x`, we get

I = `int_2^5 ("(  )")/(sqrt(7 - x) + "(  )")  "d"x`   ......(ii)

Adding equations (i) and (ii), we get

2I = `int_2^5 (sqrt(x))/(sqrt(x) - sqrt(7 - x))  "d"x + (   )  "d"x`

2I = `int_2^5 (("(    )" + "(     )")/("(    )" + "(     )"))  "d"x`

2I = `square`

∴ I =  `square`


`int (cos x + x sin x)/(x(x + cos x))`dx = ?


`int_0^(pi"/"4)` log(1 + tanθ) dθ = ______


The value of `int_-3^3 ("a"x^5 + "b"x^3 + "c"x + "k")"dx"`, where a, b, c, k are constants, depends only on ______.


`int_2^3 x/(x^2 - 1)` dx = ______


`int_0^{pi/2}((3sqrtsecx)/(3sqrtsecx + 3sqrt(cosecx)))dx` = ______ 


`int_0^{pi/2} xsinx dx` = ______


`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________


`int_{pi/6}^{pi/3} sin^2x dx` = ______ 


`int_(-1)^1 (x^3 + |x| + 1)/(x^2 + 2|x| + 1) "d"x` is equal to ______.


`int_(-2)^2 |x cos pix| "d"x` is equal to ______.


`int_((-pi)/4)^(pi/4) "dx"/(1 + cos2x)` is equal to ______.


Evaluate:

`int_2^8 (sqrt(10 - "x"))/(sqrt"x" + sqrt(10 - "x")) "dx"`


Evaluate: `int_2^5 sqrt(x)/(sqrt(x) + sqrt(7) - x)dx`


`int_0^5 cos(π(x - [x/2]))dx` where [t] denotes greatest integer less than or equal to t, is equal to ______.


The value of `int_0^(π/4) (sin 2x)dx` is ______.


Evaluate:

`int_0^1 |2x + 1|dx`


Evaluate the following integral:

`int_-9^9 x^3/(4 - x^2) dx`


Evaluate the following integral:

`int_-9^9x^3/(4-x^2)dx`


Evaluate the following integral:

`int_0^1x(1-x)^5dx`


Evaluate the following integral:

`int_0^1x(1 - x)^5dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×