Advertisements
Advertisements
प्रश्न
The value of `int_0^(π/4) (sin 2x)dx` is ______.
पर्याय
0
1
`1/2`
`-1/2`
उत्तर
The value of `int_0^(π/4) (sin 2x)dx` is `underlinebb(1/2)`.
Explanation:
`int_0^(π/4) (sin 2x)dx`
Let u = 2x
If x = 0 then, u = 0
and x = `π/4` then u = `π/2`.
`\implies` du = 2 dx
`1/2 int_0^(π/2) sin u du = -1/2 [cos u]_0^(π/2)`
= `-1/2 [0 - 1]`
= `1/2`
APPEARS IN
संबंधित प्रश्न
Prove that: `int_0^(2a)f(x)dx=int_0^af(x)dx+int_0^af(2a-x)dx`
If `int_0^alpha(3x^2+2x+1)dx=14` then `alpha=`
(A) 1
(B) 2
(C) –1
(D) –2
By using the properties of the definite integral, evaluate the integral:
`int_0^(2x) cos^5 xdx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) (sin x - cos x)/(1+sinx cos x) dx`
The value of `int_0^(pi/2) log ((4+ 3sinx)/(4+3cosx))` dx is ______.
Evaluate : `int _0^(pi/2) "sin"^ 2 "x" "dx"`
Evaluate : `int "x"^2/("x"^4 + 5"x"^2 + 6) "dx"`
Prove that `int_0^"a" "f" ("x") "dx" = int_0^"a" "f" ("a" - "x") "d x",` hence evaluate `int_0^pi ("x" sin "x")/(1 + cos^2 "x") "dx"`
Choose the correct alternative:
`int_(-9)^9 x^3/(4 - x^2) "d"x` =
Evaluate `int_1^3 x^2*log x "d"x`
`int_0^(pi/2) sqrt(cos theta) * sin^2 theta "d" theta` = ______.
`int_{pi/6}^{pi/3} sin^2x dx` = ______
`int_-1^1x^2/(1+x^2) dx=` ______.
Evaluate `int_(-1)^2 "f"(x) "d"x`, where f(x) = |x + 1| + |x| + |x – 1|
`int_((-pi)/4)^(pi/4) "dx"/(1 + cos2x)` is equal to ______.
Evaluate: `int_((-π)/2)^(π/2) (sin|x| + cos|x|)dx`
`int_4^9 1/sqrt(x)dx` = ______.
The value of the integral `int_0^1 x cot^-1(1 - x^2 + x^4)dx` is ______.
If `int_0^(π/2) log cos x dx = π/2 log(1/2)`, then `int_0^(π/2) log sec dx` = ______.
`int_-1^1 (17x^5 - x^4 + 29x^3 - 31x + 1)/(x^2 + 1) dx` is equal to ______.
Evaluate: `int_1^3 sqrt(x + 5)/(sqrt(x + 5) + sqrt(9 - x))dx`
If `int_0^1(3x^2 + 2x+a)dx = 0,` then a = ______
Evaluate the following integral:
`int_0^1 x (1 - x)^5 dx`
Evaluate:
`int_0^sqrt(2)[x^2]dx`
Evaluate the following integral:
`int_-9^9x^3/(4-x^2)dx`