मराठी

The value of π∫0π4(sin2x)dx is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The value of `int_0^(π/4) (sin 2x)dx` is ______.

पर्याय

  • 0

  • 1

  • `1/2`

  • `-1/2`

MCQ
रिकाम्या जागा भरा

उत्तर

The value of `int_0^(π/4) (sin 2x)dx` is `underlinebb(1/2)`.

Explanation:

`int_0^(π/4) (sin 2x)dx`

Let u = 2x

If x = 0 then, u = 0

and x = `π/4` then u = `π/2`.

`\implies` du = 2 dx

`1/2 int_0^(π/2) sin u  du = -1/2 [cos u]_0^(π/2)`

= `-1/2 [0 - 1]`

= `1/2`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2022-2023 (March) Delhi Set 2

संबंधित प्रश्‍न

Prove that: `int_0^(2a)f(x)dx=int_0^af(x)dx+int_0^af(2a-x)dx`


If `int_0^alpha(3x^2+2x+1)dx=14` then `alpha=`

(A) 1

(B) 2

(C) –1

(D) –2


By using the properties of the definite integral, evaluate the integral:

`int_0^(2x) cos^5 xdx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2) (sin x - cos x)/(1+sinx cos x) dx`


The value of `int_0^(pi/2) log  ((4+ 3sinx)/(4+3cosx))` dx is ______.


Evaluate : `int _0^(pi/2) "sin"^ 2  "x"  "dx"`


Evaluate  : `int "x"^2/("x"^4 + 5"x"^2 + 6) "dx"`


Prove that `int_0^"a" "f" ("x") "dx" = int_0^"a" "f" ("a" - "x") "d x",` hence evaluate `int_0^pi ("x" sin "x")/(1 + cos^2 "x") "dx"`


Choose the correct alternative:

`int_(-9)^9 x^3/(4 - x^2)  "d"x` =


Evaluate `int_1^3 x^2*log x  "d"x`


`int_0^(pi/2) sqrt(cos theta) * sin^2 theta "d" theta` = ______.


`int_{pi/6}^{pi/3} sin^2x dx` = ______ 


`int_-1^1x^2/(1+x^2)  dx=` ______.


Evaluate `int_(-1)^2 "f"(x)  "d"x`, where f(x) = |x + 1| + |x| + |x – 1|


`int_((-pi)/4)^(pi/4) "dx"/(1 + cos2x)` is equal to ______.


Evaluate: `int_((-π)/2)^(π/2) (sin|x| + cos|x|)dx`


`int_4^9 1/sqrt(x)dx` = ______.


The value of the integral `int_0^1 x cot^-1(1 - x^2 + x^4)dx` is ______.


If `int_0^(π/2) log cos x  dx = π/2 log(1/2)`, then `int_0^(π/2) log sec dx` = ______.


`int_-1^1 (17x^5 - x^4 + 29x^3 - 31x + 1)/(x^2 + 1) dx` is equal to ______.


Evaluate: `int_1^3 sqrt(x + 5)/(sqrt(x + 5) + sqrt(9 - x))dx`


If `int_0^1(3x^2 + 2x+a)dx = 0,` then a = ______


Evaluate the following integral:

`int_0^1 x (1 - x)^5 dx`


Evaluate:

`int_0^sqrt(2)[x^2]dx`


Evaluate the following integral:

`int_-9^9x^3/(4-x^2)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×