Advertisements
Advertisements
प्रश्न
By using the properties of the definite integral, evaluate the integral:
`int_0^(2x) cos^5 xdx`
उत्तर
Let f (x) = cos5 x
Now we have
f (2π - x) = (cos (2π - x))5
= (cos x)5 = cos5 x = f (x)
⇒ `I = 2 int_0^pi cos^5 x dx`
`[∵ int_0^(2a) f (x) dx = 2 int_0^a f (x)dx, if (2a - x) = f(x) = 0, if (2a - x) = -f(x)]`
Again, we have
f (π - x) = (cos (π - x))5 = -cos5 x = - f(x)
⇒ `2 int_0^pi cos^5 x dx = 0`
Hence, `int_0^(2pi) cos^5 x dx `
`= 2 int_0^5 cos^5 x dx `
= 2 × 0
= 0
APPEARS IN
संबंधित प्रश्न
Prove that: `int_0^(2a)f(x)dx=int_0^af(x)dx+int_0^af(2a-x)dx`
Evaluate : `intsec^nxtanxdx`
By using the properties of the definite integral, evaluate the integral:
`int_(-5)^5 | x + 2| dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) (2log sin x - log sin 2x)dx`
`∫_4^9 1/sqrtxdx=`_____
(A) 1
(B) –2
(C) 2
(D) –1
Evaluate `int e^x [(cosx - sin x)/sin^2 x]dx`
Evaluate `int_0^(pi/2) cos^2x/(1+ sinx cosx) dx`
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that
Evaluate : `int 1/("x" [("log x")^2 + 4]) "dx"`
Evaluate : `int 1/sqrt("x"^2 - 4"x" + 2) "dx"`
The total revenue R = 720 - 3x2 where x is number of items sold. Find x for which total revenue R is increasing.
`int_0^2 e^x dx` = ______.
`int (cos x + x sin x)/(x(x + cos x))`dx = ?
`int_0^(pi"/"4)` log(1 + tanθ) dθ = ______
`int_2^3 x/(x^2 - 1)` dx = ______
`int_-9^9 x^3/(4 - x^2)` dx = ______
`int_3^9 x^3/((12 - x)^3 + x^3)` dx = ______
`int_-1^1x^2/(1+x^2) dx=` ______.
`int_0^(pi/2) 1/(1 + cosx) "d"x` = ______.
`int_0^9 1/(1 + sqrtx)` dx = ______
Find `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x)) "d"x`
`int_0^(2"a") "f"(x) "d"x = 2int_0^"a" "f"(x) "d"x`, if f(2a – x) = ______.
`int_0^(pi/2) (sin^"n" x"d"x)/(sin^"n" x + cos^"n" x)` = ______.
Evaluate: `int_0^(π/2) 1/(1 + (tanx)^(2/3)) dx`
If `int_0^1(sqrt(2x) - sqrt(2x - x^2))dx = int_0^1(1 - sqrt(1 - y^2) - y^2/2)dy + int_1^2(2 - y^2/2)dy` + I then I equal.
The integral `int_0^2||x - 1| -x|dx` is equal to ______.
If `β + 2int_0^1x^2e^(-x^2)dx = int_0^1e^(-x^2)dx`, then the value of β is ______.
`int_0^(pi/4) (sec^2x)/((1 + tanx)(2 + tanx))dx` equals ______.
Evaluate: `int_0^π 1/(5 + 4 cos x)dx`
What is `int_0^(π/2)` sin 2x ℓ n (cot x) dx equal to ?
`int_-1^1 (17x^5 - x^4 + 29x^3 - 31x + 1)/(x^2 + 1) dx` is equal to ______.
Evaluate: `int_1^3 sqrt(x + 5)/(sqrt(x + 5) + sqrt(9 - x))dx`
If `int_0^(2π) cos^2 x dx = k int_0^(π/2) cos^2 x dx`, then the value of k is ______.
Evaluate: `int_0^(π/4) log(1 + tanx)dx`.
`int_1^2 x logx dx`= ______
Evaluate `int_1^2(x+3)/(x(x+2)) dx`
Evaluate the following integrals:
`int_-9^9 x^3/(4 - x^3 ) dx`
Evaluate the following integral:
`int_0^1 x (1 - x)^5 dx`
Solve the following.
`int_0^1e^(x^2)x^3dx`