मराठी

By using the properties of the definite integral, evaluate the integral: ∫02xcos5xdx - Mathematics

Advertisements
Advertisements

प्रश्न

By using the properties of the definite integral, evaluate the integral:

`int_0^(2x) cos^5 xdx`

बेरीज

उत्तर

Let f (x) = cos5 x

Now we have

f (2π - x) = (cos (2π - x))5

= (cos x)5 = cos5 x = f (x)

⇒ `I = 2 int_0^pi cos^5 x dx`       

`[∵ int_0^(2a) f (x) dx = 2 int_0^a f (x)dx, if (2a - x) = f(x) = 0, if (2a - x) = -f(x)]`

Again, we have

f (π - x) = (cos (π - x))5 = -cos5 x = - f(x)

⇒ `2 int_0^pi cos^5 x  dx = 0`

Hence, `int_0^(2pi) cos^5 x  dx `

`= 2 int_0^5 cos^5 x  dx `

= 2 × 0

= 0

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Integrals - Exercise 7.11 [पृष्ठ ३४७]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 7 Integrals
Exercise 7.11 | Q 14 | पृष्ठ ३४७

संबंधित प्रश्‍न

Prove that: `int_0^(2a)f(x)dx=int_0^af(x)dx+int_0^af(2a-x)dx`


Evaluate : `intsec^nxtanxdx`


By using the properties of the definite integral, evaluate the integral:

`int_(-5)^5 | x + 2| dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2) (2log sin x - log sin 2x)dx`


`∫_4^9 1/sqrtxdx=`_____

(A) 1

(B) –2

(C) 2

(D) –1


Evaluate `int e^x [(cosx - sin x)/sin^2 x]dx`


Evaluate `int_0^(pi/2) cos^2x/(1+ sinx cosx) dx`


If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that

\[\int_a^b xf\left( x \right)dx = \left( \frac{a + b}{2} \right) \int_a^b f\left( x \right)dx\]

Evaluate : `int 1/("x" [("log x")^2 + 4])  "dx"`


Evaluate :  `int 1/sqrt("x"^2 - 4"x" + 2) "dx"`


The total revenue R = 720 - 3x2 where x is number of items sold. Find x for which total  revenue R is increasing.


`int_0^2 e^x dx` = ______.


`int (cos x + x sin x)/(x(x + cos x))`dx = ?


`int_0^(pi"/"4)` log(1 + tanθ) dθ = ______


`int_2^3 x/(x^2 - 1)` dx = ______


`int_-9^9 x^3/(4 - x^2)` dx = ______


`int_3^9 x^3/((12 - x)^3 + x^3)` dx = ______ 


`int_-1^1x^2/(1+x^2)  dx=` ______.


`int_0^(pi/2) 1/(1 + cosx) "d"x` = ______.


`int_0^9 1/(1 + sqrtx)` dx = ______ 


Find `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x)) "d"x`


`int_0^(2"a") "f"(x) "d"x = 2int_0^"a" "f"(x) "d"x`, if f(2a – x) = ______.


`int_0^(pi/2) (sin^"n" x"d"x)/(sin^"n" x + cos^"n" x)` = ______.


Evaluate: `int_0^(π/2) 1/(1 + (tanx)^(2/3)) dx`


If `int_0^1(sqrt(2x) - sqrt(2x - x^2))dx = int_0^1(1 - sqrt(1 - y^2) - y^2/2)dy + int_1^2(2 - y^2/2)dy` + I then I equal.


The integral `int_0^2||x - 1| -x|dx` is equal to ______.


If `β + 2int_0^1x^2e^(-x^2)dx = int_0^1e^(-x^2)dx`, then the value of β is ______.


`int_0^(pi/4) (sec^2x)/((1 + tanx)(2 + tanx))dx` equals ______.


Evaluate: `int_0^π 1/(5 + 4 cos x)dx`


What is `int_0^(π/2)` sin 2x ℓ n (cot x) dx equal to ?


`int_-1^1 (17x^5 - x^4 + 29x^3 - 31x + 1)/(x^2 + 1) dx` is equal to ______.


Evaluate: `int_1^3 sqrt(x + 5)/(sqrt(x + 5) + sqrt(9 - x))dx`


If `int_0^(2π) cos^2 x  dx = k int_0^(π/2) cos^2 x  dx`, then the value of k is ______.


Evaluate: `int_0^(π/4) log(1 + tanx)dx`.


`int_1^2 x logx  dx`= ______


Evaluate `int_1^2(x+3)/(x(x+2))  dx`


Evaluate the following integrals:

`int_-9^9 x^3/(4 - x^3 ) dx`


Evaluate the following integral:

`int_0^1 x (1 - x)^5 dx`


Solve the following.

`int_0^1e^(x^2)x^3dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×