Advertisements
Advertisements
प्रश्न
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that
उत्तर
\[\int_a^b xf\left( x \right)dx = \int_a^b \left( a + b - x \right)f\left( a + b - x \right)dx ................\left[ \int_a^b f\left( x \right)dx = \int_a^b f\left( a + b - x \right)dx \right]\]
\[ \Rightarrow \int_a^b xf\left( x \right)dx = \int_a^b \left( a + b - x \right)f\left( x \right)dx .....................\left[ f\left( a + b - x \right) = f\left( x \right) \right]\]
\[ \Rightarrow \int_a^b xf\left( x \right)dx = \int_a^b \left( a + b \right)f\left( x \right)dx - \int_a^b xf\left( x \right)dx\]
\[ \Rightarrow 2 \int_a^b xf\left( x \right)dx = \left( a + b \right) \int_a^b f\left( x \right)dx\]
\[ \Rightarrow \int_a^b xf\left( x \right)dx = \left( \frac{a + b}{2} \right) \int_a^b f\left( x \right)dx\]
APPEARS IN
संबंधित प्रश्न
`∫_4^9 1/sqrtxdx=`_____
(A) 1
(B) –2
(C) 2
(D) –1
Prove that `int_0^af(x)dx=int_0^af(a-x) dx`
hence evaluate `int_0^(pi/2)sinx/(sinx+cosx) dx`
\[\int\limits_0^a 3 x^2 dx = 8,\] find the value of a.
Evaluate : \[\int(3x - 2) \sqrt{x^2 + x + 1}dx\] .
Prove that `int _a^b f(x) dx = int_a^b f (a + b -x ) dx` and hence evaluate `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tan x))` .
Evaluate : `int 1/("x" [("log x")^2 + 4]) "dx"`
Evaluate : `int 1/sqrt("x"^2 - 4"x" + 2) "dx"`
Evaluate = `int (tan x)/(sec x + tan x)` . dx
Prove that `int_0^"a" "f" ("x") "dx" = int_0^"a" "f" ("a" - "x") "d x",` hence evaluate `int_0^pi ("x" sin "x")/(1 + cos^2 "x") "dx"`
Evaluate: `int_0^pi ("x"sin "x")/(1+ 3cos^2 "x") d"x"`.
Evaluate the following integrals : `int_2^5 sqrt(x)/(sqrt(x) + sqrt(7 - x))*dx`
Choose the correct alternative:
`int_(-9)^9 x^3/(4 - x^2) "d"x` =
Evaluate `int_1^2 (sqrt(x))/(sqrt(3 - x) + sqrt(x)) "d"x`
`int_0^(pi/4) (sec^2 x)/((1 + tan x)(2 + tan x))`dx = ?
`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________
`int_(-pi/4)^(pi/4) 1/(1 - sinx) "d"x` = ______.
Find `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x)) "d"x`
Find `int_0^(pi/4) sqrt(1 + sin 2x) "d"x`
`int_(-"a")^"a" "f"(x) "d"x` = 0 if f is an ______ function.
`int_0^(pi/2) (sin^"n" x"d"x)/(sin^"n" x + cos^"n" x)` = ______.
If `int (log "x")^2/"x" "dx" = (log "x")^"k"/"k" + "c"`, then the value of k is:
`int_(-5)^5 x^7/(x^4 + 10) dx` = ______.
Let f be a real valued continuous function on [0, 1] and f(x) = `x + int_0^1 (x - t)f(t)dt`. Then, which of the following points (x, y) lies on the curve y = f(x)?
`int_0^1|3x - 1|dx` equals ______.
`int_0^π(xsinx)/(1 + cos^2x)dx` equals ______.
Let `int ((x^6 - 4)dx)/((x^6 + 2)^(1/4).x^4) = (ℓ(x^6 + 2)^m)/x^n + C`, then `n/(ℓm)` is equal to ______.
The value of the integral `int_0^sqrt(2)([sqrt(2 - x^2)] + 2x)dx` (where [.] denotes greatest integer function) is ______.
Let `int_0^∞ (t^4dt)/(1 + t^2)^6 = (3π)/(64k)` then k is equal to ______.
Let f be continuous periodic function with period 3, such that `int_0^3f(x)dx` = 1. Then the value of `int_-4^8f(2x)dx` is ______.
If `int_0^K dx/(2 + 18x^2) = π/24`, then the value of K is ______.
`int_0^(π/4) x. sec^2 x dx` = ______.
If `int_0^(π/2) log cos x dx = π/2 log(1/2)`, then `int_0^(π/2) log sec dx` = ______.
The value of `int_0^(π/4) (sin 2x)dx` is ______.
Evaluate: `int_0^π x/(1 + sinx)dx`.
For any integer n, the value of `int_-π^π e^(cos^2x) sin^3 (2n + 1)x dx` is ______.
If `int_0^1(3x^2 + 2x+a)dx = 0,` then a = ______
Evaluate: `int_-1^1 x^17.cos^4x dx`
Evaluate the following definite integral:
`int_-2^3(1)/(x + 5) dx`