मराठी

If F ( a + B − X ) = F ( X ) , Then Prove that ∫ B a X F ( X ) D X = ( a + B 2 ) ∫ B a F ( X ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that

\[\int_a^b xf\left( x \right)dx = \left( \frac{a + b}{2} \right) \int_a^b f\left( x \right)dx\]
बेरीज

उत्तर

\[\int_a^b xf\left( x \right)dx = \int_a^b \left( a + b - x \right)f\left( a + b - x \right)dx ................\left[ \int_a^b f\left( x \right)dx = \int_a^b f\left( a + b - x \right)dx \right]\]
\[ \Rightarrow \int_a^b xf\left( x \right)dx = \int_a^b \left( a + b - x \right)f\left( x \right)dx .....................\left[ f\left( a + b - x \right) = f\left( x \right) \right]\]
\[ \Rightarrow \int_a^b xf\left( x \right)dx = \int_a^b \left( a + b \right)f\left( x \right)dx - \int_a^b xf\left( x \right)dx\]
\[ \Rightarrow 2 \int_a^b xf\left( x \right)dx = \left( a + b \right) \int_a^b f\left( x \right)dx\]
\[ \Rightarrow \int_a^b xf\left( x \right)dx = \left( \frac{a + b}{2} \right) \int_a^b f\left( x \right)dx\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Definite Integrals - Exercise 20.5 [पृष्ठ ९६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 20 Definite Integrals
Exercise 20.5 | Q 47 | पृष्ठ ९६

संबंधित प्रश्‍न

`∫_4^9 1/sqrtxdx=`_____

(A) 1

(B) –2

(C) 2

(D) –1


Prove that `int_0^af(x)dx=int_0^af(a-x) dx`

hence evaluate `int_0^(pi/2)sinx/(sinx+cosx) dx`


\[\int\limits_0^a 3 x^2 dx = 8,\] find the value of a.


Evaluate : \[\int(3x - 2) \sqrt{x^2 + x + 1}dx\] .


Prove that `int _a^b f(x) dx = int_a^b f (a + b -x ) dx`  and hence evaluate   `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tan x))` .   


Evaluate : `int 1/("x" [("log x")^2 + 4])  "dx"`


Evaluate :  `int 1/sqrt("x"^2 - 4"x" + 2) "dx"`


Evaluate = `int (tan x)/(sec x + tan x)` . dx


Prove that `int_0^"a" "f" ("x") "dx" = int_0^"a" "f" ("a" - "x") "d x",` hence evaluate `int_0^pi ("x" sin "x")/(1 + cos^2 "x") "dx"`


Evaluate: `int_0^pi ("x"sin "x")/(1+ 3cos^2 "x") d"x"`.


Evaluate the following integrals : `int_2^5 sqrt(x)/(sqrt(x) + sqrt(7 - x))*dx`


Choose the correct alternative:

`int_(-9)^9 x^3/(4 - x^2)  "d"x` =


Evaluate `int_1^2 (sqrt(x))/(sqrt(3 - x) + sqrt(x))  "d"x`


`int_0^(pi/4) (sec^2 x)/((1 + tan x)(2 + tan x))`dx = ?


`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________


`int_(-pi/4)^(pi/4) 1/(1 - sinx) "d"x` = ______.


Find `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x)) "d"x`


Find `int_0^(pi/4) sqrt(1 + sin 2x) "d"x`


`int_(-"a")^"a" "f"(x) "d"x` = 0 if f is an ______ function.


`int_0^(pi/2) (sin^"n" x"d"x)/(sin^"n" x + cos^"n" x)` = ______.


If `int (log "x")^2/"x" "dx" = (log "x")^"k"/"k" + "c"`, then the value of k is:


`int_(-5)^5  x^7/(x^4 + 10)  dx` = ______.


Let f be a real valued continuous function on [0, 1] and f(x) = `x + int_0^1 (x - t)f(t)dt`. Then, which of the following points (x, y) lies on the curve y = f(x)?


`int_0^1|3x - 1|dx` equals ______.


`int_0^π(xsinx)/(1 + cos^2x)dx` equals ______.


Let `int ((x^6 - 4)dx)/((x^6 + 2)^(1/4).x^4) = (ℓ(x^6 + 2)^m)/x^n + C`, then `n/(ℓm)` is equal to ______.


The value of the integral `int_0^sqrt(2)([sqrt(2 - x^2)] + 2x)dx` (where [.] denotes greatest integer function) is ______.


Let `int_0^∞ (t^4dt)/(1 + t^2)^6 = (3π)/(64k)` then k is equal to ______.


Let f be continuous periodic function with period 3, such that `int_0^3f(x)dx` = 1. Then the value of `int_-4^8f(2x)dx` is ______.


If `int_0^K dx/(2 + 18x^2) = π/24`, then the value of K is ______.


`int_0^(π/4) x. sec^2 x  dx` = ______.


If `int_0^(π/2) log cos x  dx = π/2 log(1/2)`, then `int_0^(π/2) log sec dx` = ______.


The value of `int_0^(π/4) (sin 2x)dx` is ______.


Evaluate: `int_0^π x/(1 + sinx)dx`.


For any integer n, the value of `int_-π^π e^(cos^2x) sin^3 (2n + 1)x  dx` is ______.


If `int_0^1(3x^2 + 2x+a)dx = 0,` then a = ______


Evaluate: `int_-1^1 x^17.cos^4x  dx`


Evaluate the following definite integral:

`int_-2^3(1)/(x + 5)  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×