Advertisements
Advertisements
प्रश्न
Prove that `int_0^"a" "f" ("x") "dx" = int_0^"a" "f" ("a" - "x") "d x",` hence evaluate `int_0^pi ("x" sin "x")/(1 + cos^2 "x") "dx"`
उत्तर
To prove: `int_0^a "f"("x") "dx" = int_0^a "f" ("a - x") "dx"`
Proof: Let t = a - x
⇒ dt = - dx
When x = 0, t = a
When x = a , t = 0
Putting the value of x in LHS
`int_a^0 "f"("a - t") (- "dt")`
= `- int_a^0 "f" ("a - t") ("dt")`
= `int_0^a "f" ("a - t") ("dt")`
= `int_0^a ("a - x") ("dx") ...(∵ int_a^b "f" (t) "dt" = int_a^b ("x")( "dx"))`
= RHS
Using this we can solve the given question as follows:
`I = int_0^pi f ("x") d"x" = int_0^pi (pi - "x") "dx"`
⇒ `2I = int_0^pi f ("x") d"x" + int_0^pi f (pi - "x") d"x" = int_0^pi ("x" sin "x")/(1 + cos^2 "x") d"x" + int_0^pi ((pi - "x") sin(pi - "x"))/(1 + cos^2 (pi - "x")) d"x"`
⇒`2"I" = int_0^pi ("x" sin "x")/(1 + cos^2 "x") "dx" + int_0^pi ((pi - "x")sin"x")/(1 + cos^2 (pi - "x")) "dx"`
⇒ `2"I" = int_0^pi (pi sin"x")/(1 + cos^2 "x") "dx"`
Let, cos x = t ⇒ -sin x dx = dt
⇒ `2"I" = -int_1^-1 (pi)/(1 + t^2) dt = -pi [ tan^-1 t ]_1^(-1) = -pi(-pi/(4) - pi/(4)) = pi^2/(2)`
∴ `"I" = pi^2/(4)`
संबंधित प्रश्न
Evaluate :`int_0^pi(xsinx)/(1+sinx)dx`
If `int_0^alpha(3x^2+2x+1)dx=14` then `alpha=`
(A) 1
(B) 2
(C) –1
(D) –2
By using the properties of the definite integral, evaluate the integral:
`int_((-pi)/2)^(pi/2) sin^2 x dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(2x) cos^5 xdx`
Evaluate `int_0^(pi/2) cos^2x/(1+ sinx cosx) dx`
\[\int\limits_0^k \frac{1}{2 + 8 x^2} dx = \frac{\pi}{16},\] find the value of k.
\[\int\limits_0^a 3 x^2 dx = 8,\] find the value of a.
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that
Find : `int_ (2"x"+1)/(("x"^2+1)("x"^2+4))d"x"`.
Evaluate the following integrals : `int_2^5 sqrt(x)/(sqrt(x) + sqrt(7 - x))*dx`
Evaluate `int_0^1 x(1 - x)^5 "d"x`
`int_0^1 ((x^2 - 2)/(x^2 + 1))`dx = ?
`int_0^{pi/2}((3sqrtsecx)/(3sqrtsecx + 3sqrt(cosecx)))dx` = ______
`int_-9^9 x^3/(4 - x^2)` dx = ______
`int_"a"^"b" sqrtx/(sqrtx + sqrt("a" + "b" - x)) "dx"` = ______.
If f(x) = |x - 2|, then `int_-2^3 f(x) dx` is ______
`int_0^(pi/2) cos x "e"^(sinx) "d"x` is equal to ______.
`int (dx)/(e^x + e^(-x))` is equal to ______.
Evaluate: `int_1^3 sqrt(x)/(sqrt(x) + sqrt(4) - x) dx`
Let `int_0^∞ (t^4dt)/(1 + t^2)^6 = (3π)/(64k)` then k is equal to ______.
`int_0^(π/4) x. sec^2 x dx` = ______.
`int_-1^1 (17x^5 - x^4 + 29x^3 - 31x + 1)/(x^2 + 1) dx` is equal to ______.
Evaluate `int_-1^1 |x^4 - x|dx`.
Evaluate the following integral:
`int_-9^9 x^3/(4 - x^2) dx`
Evaluate the following integral:
`int_-9^9x^3/(4-x^2)dx`
Evaluate the following definite intergral:
`int_1^2 (3x)/(9x^2 - 1) dx`
Evaluate the following integral:
`int_0^1x(1-x)^5dx`
Evaluate the following integral:
`int_0^1x(1 - x)^5dx`