Advertisements
Advertisements
प्रश्न
Find: `int_ (cos"x")/((1 + sin "x") (2+ sin"x")) "dx"`
उत्तर
`int_ (cos"x")/((1 + sin "x") (2+ sin"x")) "dx"`
Put 2 + sin x = t
⇒ 1 + sin x = t - 1
cos x dx = dt
`int_ ("dt")/(("t" -1) "t")`
= `int_ ((1)/("t" - 1) - (1)/("t")) "dt"`
= `int_ (1)/("t" -1) "dt" - int 1/"t" "dt"`
= log (t - 1) - log t + C
= log (2 + sin x - 1) - log (2 + sin x) + C
= log (1 + sin x) - log (2 + sin x) + C
= `"log" ((1+ sin "x")/(2 + sin "x")) + "C" ` ...`(∵ "log m" - "log n" = "log" ("m"/"n"))`
APPEARS IN
संबंधित प्रश्न
Evaluate : `intsin(x-a)/sin(x+a)dx`
Find the integrals of the function:
sin2 (2x + 5)
Find the integrals of the function:
sin3 (2x + 1)
Find the integrals of the function:
sin x sin 2x sin 3x
Find the integrals of the function:
`(1-cosx)/(1 + cos x)`
Find the integrals of the function:
`(cos 2x - cos 2 alpha)/(cos x - cos alpha)`
Find the integrals of the function:
`(cos x - sinx)/(1+sin 2x)`
Find the integrals of the function:
tan3 2x sec 2x
Find the integrals of the function:
`(sin^3 x + cos^3 x)/(sin^2x cos^2 x)`
Find the integrals of the function:
`1/(sin xcos^3 x)`
`int (e^x(1 +x))/cos^2(e^x x) dx` equals ______.
Evaluate `int_0^pi (x sin x)/(1 + cos^2 x) dx`
Evaluate : \[\int\limits_0^\pi \frac{x \tan x}{\sec x \cdot cosec x}dx\] .
Find `int_ sin ("x" - a)/(sin ("x" + a )) d"x"`
Find the area of the triangle whose vertices are (-1, 1), (0, 5) and (3, 2), using integration.
Find: `int sin^-1 (2x) dx.`
Evaluate `int tan^8 x sec^4 x"d"x`
Find `int "dx"/(2sin^2x + 5cos^2x)`
Evaluate the following:
`int ("d"x)/(1 + cos x)`
Evaluate the following:
`int sqrt(1 + sinx)"d"x`
Evaluate the following:
`int (sin^6x + cos^6x)/(sin^2x cos^2x) "d"x`
Evaluate the following:
`int "e"^(tan^-1x) ((1 + x + x^2)/(1 + x^2)) "d"x`
Evaluate the following:
`int sin^-1 sqrt(x/("a" + x)) "d"x` (Hint: Put x = a tan2θ)
`int sinx/(3 + 4cos^2x) "d"x` = ______.
The value of the integral `int_(1/3)^1 (x - x^3)^(1/3)/x^4 dx` is