मराठी

Find the integrals of the function: sin x sin 2x sin 3x - Mathematics

Advertisements
Advertisements

प्रश्न

Find the integrals of the function:

sin x sin 2x sin 3x

बेरीज

उत्तर

Let `I = int sin x sin 2x sin 3x  dx`

`= 1/2 int (2 sin x sin 2x) sin 3x  dx`

`= 1/2 int (cos x - cos 3x) sin 3x  dx`       ... [∵ 2 sin A sin B =  cos (A - B) - cos (A + B)]

`= 1/4 int 2 sin 3x cos x  dx - 1/4 int 2 sin 3x cos 3x dx`   .... [∵ 2 sin A cos B = sin (A + B) + sin (A - B)]

`= 1/4 int (sin 4x + sin 2x) dx - 1/4 int sin 6x dx`

`= -1/16 cos 4x - 1/8 cos 2x + 1/24 cos 6x + C`

`= 1/4 [1/6 cos 6x - 1/4 cos 4x - 1/2 cos 2x] + C`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Integrals - Exercise 7.3 [पृष्ठ ३०७]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 7 Integrals
Exercise 7.3 | Q 6 | पृष्ठ ३०७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Evaluate :`int_(pi/6)^(pi/3) dx/(1+sqrtcotx)`


Evaluate : `intsin(x-a)/sin(x+a)dx`

 


Find the integrals of the function:

sin2 (2x + 5)


Find the integrals of the function:

sin3 (2x + 1)


Find the integrals of the function:

sin3 x cos3 x


Find the integrals of the function:

`cos x/(1 + cos x)`


Find the integrals of the function:

`(sin^2 x)/(1 + cos x)`


Find the integrals of the function:

`(cos x -  sinx)/(1+sin 2x)`


Find the integrals of the function:

tan3 2x sec 2x


Find the integrals of the function:

`(sin^3 x + cos^3 x)/(sin^2x cos^2 x)`


Find the integrals of the function:

`(cos 2x+ 2sin^2x)/(cos^2 x)`


Find the integrals of the function:

sin−1 (cos x)


Find the integrals of the function:

`1/(cos(x - a) cos(x - b))`


Evaluate `int_0^pi (x sin x)/(1 + cos^2 x) dx`


Find `int((3 sin x - 2) cos x)/(13 - cos^2 x- 7 sin x) dx`


Differentiate : \[\tan^{- 1} \left( \frac{1 + \cos x}{\sin x} \right)\] with respect to x .


Find `int_  (sin "x" - cos "x" )/sqrt(1 + sin 2"x") d"x", 0 < "x" < π / 2 `


Find `int_  sin ("x" - a)/(sin ("x" + a )) d"x"`


Find `int_  (log "x")^2 d"x"`


Find the area of the triangle whose vertices are (-1, 1), (0, 5) and (3, 2), using integration. 


Find: `int_  (cos"x")/((1 + sin "x") (2+ sin"x")) "dx"`


Find:
`int"dx"/sqrt(5-4"x" - 2"x"^2)`


Integrate the function `cos("x + a")/sin("x + b")` w.r.t. x.


Find: `int sec^2 x /sqrt(tan^2 x+4) dx.`


Find: `intsqrt(1 - sin 2x) dx, pi/4 < x < pi/2`


Find: `int sin^-1 (2x) dx.`


Evaluate `int tan^8 x sec^4 x"d"x`


Evaluate the following:

`int ("d"x)/(1 + cos x)`


Evaluate the following:

`int sin^-1 sqrt(x/("a" + x)) "d"x`  (Hint: Put x = a tan2θ)


`int sinx/(3 + 4cos^2x) "d"x` = ______.


`int (cos^2x)/(sin x + cos x)^2  dx` is equal to


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×