Advertisements
Advertisements
प्रश्न
Evaluate the following:
`int sin^-1 sqrt(x/("a" + x)) "d"x` (Hint: Put x = a tan2θ)
उत्तर
Let I = `int sin^-1 sqrt(x/("a" + x)) "d"x`
Put x = a tan2θ
dx = 2a tan θ . sec2θ . dθ
∴ I = `int sin^-1 sqrt(("a" tan^2theta)/("a" + "a" tan^2 theta)) * 2"a" tan theta * sec^2theta "d"theta`
= `int sin^-1 (sqrt("a") tan theta)/(sqrt("a") tan theta) * 2"a" tan theta * sec theta "d"theta`
= `int sin^-1 ((sintheta/costheta)/(1/costheta)) * 2"a" tan theta * sec^2theta "d"theta`
= `int sin^-1 (sin theta) * 2"a" tan theta * sec^2theta "d"theta`
= `2"a" int theta tan theta * sec^2theta "d"theta`
= `2"a"[theta int tan theta * sec^2 theta "d"theta - int ["D"(theta) * int tan theta * sec^2 theta "d"theta]]`
= `2"a" [theta * (tan^2theta)/2 - int (1*tan^2theta)/2 "d"theta]`
= `2"a"[theta * (tan^2theta)/2 - 1/2 int (sec^2theta - 1)"d"theta]`
= `2"a"[theta* (tan^2theta)/2 - 1/2 (tantheta - theta)]`
= `2"a"[theta * (tan^2theta)/2 - 1/2 tan theta + 1/2 theta]`
= `2"a"[tan^-1 sqrt(x/"a") * x/(2"a") - 1/2 sqrt(x/"a") + 1/2 tan^-1 sqrt(x/"a")] + "C"`
= `"a"[x/"a" tan^-1 sqrt(x/"a") - sqrt(x/"a") + tan^-1 sqrt(x/"a")] + "C"`
Hence, I = `"a"[x/"a" tan^-1 sqrt(x/"a") - sqrt(x/"a") + tan^-1 sqrt(x/"a")] + "C"`
APPEARS IN
संबंधित प्रश्न
Find the integrals of the function:
cos 2x cos 4x cos 6x
Find the integrals of the function:
sin x sin 2x sin 3x
Find the integrals of the function:
sin4 x
Find the integrals of the function:
tan4x
Find the integrals of the function:
`1/(sin xcos^3 x)`
Find the integrals of the function:
`(cos 2x)/(cos x + sin x)^2`
Find the integrals of the function:
sin−1 (cos x)
`int (sin^2x - cos^2 x)/(sin^2 x cos^2 x) dx` is equal to ______.
Find `int dx/(x^2 + 4x + 8)`
Evaluate `int_0^pi (x sin x)/(1 + cos^2 x) dx`
Find `int (2x)/((x^2 + 1)(x^4 + 4))`dx
Differentiate : \[\tan^{- 1} \left( \frac{1 + \cos x}{\sin x} \right)\] with respect to x .
Find `int_ sin ("x" - a)/(sin ("x" + a )) d"x"`
Find `int_ (log "x")^2 d"x"`
Find: `int_ (cos"x")/((1 + sin "x") (2+ sin"x")) "dx"`
Integrate the function `cos("x + a")/sin("x + b")` w.r.t. x.
Find: `int sin^-1 (2x) dx.`
Evaluate the following:
`int tan^2x sec^4 x"d"x`
Evaluate the following:
`int (sinx + cosx)/sqrt(1 + sin 2x) "d"x`
Evaluate the following:
`int (sin^6x + cos^6x)/(sin^2x cos^2x) "d"x`
Evaluate the following:
`int (cosx - cos2x)/(1 - cosx) "d"x`
Evaluate the following:
`int "e"^(tan^-1x) ((1 + x + x^2)/(1 + x^2)) "d"x`
The value of the integral `int_(1/3)^1 (x - x^3)^(1/3)/x^4 dx` is
`int (cos^2x)/(sin x + cos x)^2 dx` is equal to