मराठी

Find the integrals of the function: cos 2x cos 4x cos 6x - Mathematics

Advertisements
Advertisements

प्रश्न

Find the integrals of the function:

cos 2x cos 4x cos 6x

बेरीज

उत्तर

Let `I = int cos 2x cos 4x cos 6x` dx

`= 1/2 int (2 cos 2x cos 4x) cos 6x  dx`

              ... [∵ 2 cos A cos B = cos (A + B) - cos (A - B)]

`= 1/2 int (cos 6x + cos 2x) cos 6x  dx`

`= 1/4 int 2 cos^2 6x  dx + 1/4 int (2 cos 2c cos 6x)  dx`

`= 1/4 int (1 + cos 12 x) dx + 1/4 int (cos 8x + cos 4x)` dx

`= 1/4 x + 1/4 ((sin 12x)/12) + 1/4 ((sin 8x)/8 + (sin 4x)/4) + C`

`= 1/4 [x + 1/12 sin 12 x + 1/8 sin 8x + 1/4 sin 4x] + C`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Integrals - Exercise 7.3 [पृष्ठ ३०७]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 7 Integrals
Exercise 7.3 | Q 3 | पृष्ठ ३०७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Evaluate :`int_(pi/6)^(pi/3) dx/(1+sqrtcotx)`


Find the integrals of the function:

sin 3x cos 4x


Find the integrals of the function:

sin3 (2x + 1)


Find the integrals of the function:

sin3 x cos3 x


Find the integrals of the function:

sin 4x sin 8x


Find the integrals of the function:

`(1-cosx)/(1 +  cos x)`


Find the integrals of the function:

`(sin^2 x)/(1 + cos x)`


Find the integrals of the function:

`(cos x -  sinx)/(1+sin 2x)`


Find the integrals of the function:

`(cos 2x)/(cos x + sin x)^2`


`int (sin^2x - cos^2 x)/(sin^2 x cos^2 x) dx` is equal to ______.


Find `int (sin^2 x - cos^2x)/(sin x cos x) dx`


Find  `int dx/(x^2 + 4x + 8)`


Evaluate `int_0^(3/2) |x sin pix|dx`


Find `int (2x)/((x^2 + 1)(x^4 + 4))`dx


Find `int((3 sin x - 2) cos x)/(13 - cos^2 x- 7 sin x) dx`


Differentiate : \[\tan^{- 1} \left( \frac{1 + \cos x}{\sin x} \right)\] with respect to x .


Find `int_  (sin "x" - cos "x" )/sqrt(1 + sin 2"x") d"x", 0 < "x" < π / 2 `


Find `int_  sin ("x" - a)/(sin ("x" + a )) d"x"`


Find `int_  (sin2"x")/((sin^2 "x"+1)(sin^2"x"+3))d"x"`


Find the area of the triangle whose vertices are (-1, 1), (0, 5) and (3, 2), using integration. 


Find:
`int"dx"/sqrt(5-4"x" - 2"x"^2)`


Integrate the function `cos("x + a")/sin("x + b")` w.r.t. x.


Find: `int sin^-1 (2x) dx.`


Find `int "dx"/(2sin^2x + 5cos^2x)`


Find `int x^2tan^-1x"d"x`


`int "e"^x (cosx - sinx)"d"x` is equal to ______.


`int "dx"/(sin^2x cos^2x)` is equal to ______.


`int (sin^6x)/(cos^8x) "d"x` = ______.


Evaluate the following:

`int ((1 + cosx))/(x + sinx) "d"x`


Evaluate the following:

`int sqrt(1 + sinx)"d"x`


Evaluate the following:

`int (cosx - cos2x)/(1 - cosx) "d"x`


Evaluate the following:

`int "e"^(tan^-1x) ((1 + x + x^2)/(1 + x^2)) "d"x`


`int (x + sinx)/(1 + cosx) "d"x` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×