Advertisements
Advertisements
प्रश्न
Find:
`int"dx"/sqrt(5-4"x" - 2"x"^2)`
उत्तर
`int"dx"/sqrt(5-4"x" - 2"x"^2)`
` = int "dx"/sqrt(2[5/2-2"x"-"x"^2]`
` =1/sqrt2int"dx"/sqrt(5/2 - 2"x" - "x"^2)`
` = 1/sqrt2 int"dx"/sqrt(5/2-("x"^2+2"x"))`
` = 1/sqrt2 int"dx"/sqrt(5/2 -("x"^2+2"x"+1-1))`
` = 1/sqrt2 int"dx"/sqrt(5/2 -("x"+1)^2+1`
` = 1/sqrt2 int"dx"/(7/2-("x"+1)^2)`
` = 1/sqrt2 int "dx"/sqrt((sqrt7/sqrt2)^2 - ("x"+1)^2)`
` = 1/sqrt2sin^-1((("x"+1)sqrt2)/sqrt7) + "C"`
` = 1/sqrt2sin^-1 (sqrt(2/7) ("x"+1)) + "C"`
APPEARS IN
संबंधित प्रश्न
Evaluate : `intsin(x-a)/sin(x+a)dx`
Find the integrals of the function:
sin 3x cos 4x
Find the integrals of the function:
cos 2x cos 4x cos 6x
Find the integrals of the function:
sin3 (2x + 1)
Find the integrals of the function:
sin3 x cos3 x
Find the integrals of the function:
`cos x/(1 + cos x)`
Find the integrals of the function:
sin4 x
Find the integrals of the function:
`(sin^2 x)/(1 + cos x)`
Find the integrals of the function:
`(cos 2x - cos 2 alpha)/(cos x - cos alpha)`
Find the integrals of the function:
`(cos x - sinx)/(1+sin 2x)`
Find the integrals of the function:
`(sin^3 x + cos^3 x)/(sin^2x cos^2 x)`
Find the integrals of the function:
`(cos 2x+ 2sin^2x)/(cos^2 x)`
`int (e^x(1 +x))/cos^2(e^x x) dx` equals ______.
Find `int (sin^2 x - cos^2x)/(sin x cos x) dx`
Find `int (2x)/((x^2 + 1)(x^4 + 4))`dx
Evaluate : \[\int\limits_0^\pi \frac{x \tan x}{\sec x \cdot cosec x}dx\] .
Find the area of the triangle whose vertices are (-1, 1), (0, 5) and (3, 2), using integration.
Find: `int sec^2 x /sqrt(tan^2 x+4) dx.`
Find: `intsqrt(1 - sin 2x) dx, pi/4 < x < pi/2`
Evaluate `int tan^8 x sec^4 x"d"x`
Find `int "dx"/(2sin^2x + 5cos^2x)`
`int "e"^x (cosx - sinx)"d"x` is equal to ______.
`int "dx"/(sin^2x cos^2x)` is equal to ______.
Evaluate the following:
`int (sin^6x + cos^6x)/(sin^2x cos^2x) "d"x`
Evaluate the following:
`int (cosx - cos2x)/(1 - cosx) "d"x`
Evaluate the following:
`int "e"^(tan^-1x) ((1 + x + x^2)/(1 + x^2)) "d"x`
Evaluate the following:
`int sin^-1 sqrt(x/("a" + x)) "d"x` (Hint: Put x = a tan2θ)
`int (cos^2x)/(sin x + cos x)^2 dx` is equal to