Advertisements
Advertisements
प्रश्न
Solve the following differential equation :
`"dy"/"dx" + "y" = cos"x" - sin"x"`
उत्तर
Given:
`"dy"/"dx" + "y" = cos"x" - sin"x"` ............(1)
This differential equation is a linear differential equation of the form `"dy"/"dx"+"PQ"="Q"`
P = 1, Q = cos x - sin x
I.F. = e∫Pdx = e∫1dx = ex
Now multiply (1) with the I.F. we get
`"e"^"x"("dy"/"dx"+"y") = "e"^"x"(cos"x"-sin"x")`
Integrating both sides with respect to x.
yex=∫excosx-sinxdx+C⇒yex=∫excosxdx-∫exsinxdx+C⇒yex=excosx-∫-sinxexdx-∫exsinxdx+C⇒yex=excosx+∫exsinxdx-∫exsinxdx+C⇒yex=excosx+C">
yex = ∫ex (cos x -sin s)dx + C
⇒ yex = ∫ex cos xdx - ∫exsin xdx + C
⇒ yex = ex cosx - ∫(- sinx)exdx - ∫exsin xdx + C
⇒ yex = ex cosx + ∫exsin xdx - ∫exsin xdx + C
⇒ yex = ex cosx + C
Thus, yex = ex cosx + C is the required solution of the given differential equation.
APPEARS IN
संबंधित प्रश्न
Solve the following differential equation: `(x^2-1)dy/dx+2xy=2/(x^2-1)`
Find the integrating factor for the following differential equation:`x logx dy/dx+y=2log x`
Solve the differential equation ` (1 + x2) dy/dx+y=e^(tan^(−1))x.`
\[\frac{dy}{dx}\] + y tan x = cos x
Find the equation of the curve passing through the point (0, 2) given that the sum of the coordinates of any point on the curve exceeds the magnitude of the slope of the tangent to the curve at that point by 5.
A wet porous substance in the open air loses its moisture at a rate proportional to the moisture content. If a sheet hung in the wind loses half of its moisture during the first hour, when will it have lost 95% moisture, weather conditions remaining the same.
Solve the differential equation : `"x"(d"y")/(d"x") + "y" - "x" + "xy"cot"x" = 0; "x" != 0.`
`"dy"/"dx" + y` = 5 is a differential equation of the type `"dy"/"dx" + "P"y` = Q but it can be solved using variable separable method also.
Integrating factor of the differential equation of the form `("d"x)/("d"y) + "P"_1x = "Q"_1` is given by `"e"^(int P_1dy)`.
If ex + ey = ex+y, then `"dy"/"dx"` is:
Polio drops are delivered to 50 K children in a district. The rate at which polio drops are given is directly proportional to the number of children who have not been administered the drops. By the end of 2nd week half the children have been given the polio drops. How many will have been given the drops by the end of 3rd week can be estimated using the solution to the differential equation `"dy"/"dx" = "k"(50 - "y")` where x denotes the number of weeks and y the number of children who have been given the drops.
The solution of the differential equation `"dy"/"dx" = "k"(50 - "y")` is given by ______.
Solve the differential equation:
`"dy"/"dx" = 2^(-"y")`
If α, β are different values of x satisfying the equation a cos x + b sinα x = c, where a, b and c are constants, then `tan ((alpha + beta)/2)` is
`int cos(log x) dx = F(x) + C` where C is arbitrary constant. Here F(x) =
Form the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis.
Solve the following differential equation: (y – sin2x)dx + tanx dy = 0
Find the general solution of the differential equation: (x3 + y3)dy = x2ydx
Let y = y(x) be the solution of the differential equation `(dy)/(dx) + (sqrt(2)y)/(2cos^4x - cos2x) = xe^(tan^-1(sqrt(2)cost2x)), 0 < x < π/2` with `y(π/4) = π^2/32`. If `y(π/3) = π^2/18e^(-tan^-1(α))`, then the value of 3α2 is equal to ______.
If y = y(x) is the solution of the differential equation `(1 + e^(2x))(dy)/(dx) + 2(1 + y^2)e^x` = 0 and y(0) = 0, then `6(y^'(0) + (y(log_esqrt(3))))^2` is equal to ______.
The population P = P(t) at time 't' of a certain species follows the differential equation `("dp")/("dt")` = 0.5P – 450. If P(0) = 850, then the time at which population becomes zero is ______.
Let y = y(x) be the solution of the differential equation `xtan(y/x)dy = (ytan(y/x) - x)dx, -1 ≤ x ≤ 1, y(1/2) = π/6`. Then the area of the region bounded by the curves x = 0, x = `1/sqrt(2)` and y = y(x) in the upper half plane is ______.