Advertisements
Advertisements
प्रश्न
Solve the differential equation:
`"dy"/"dx" = 2^(-"y")`
उत्तर
Given differential equation is
`"dy"/"dx" = 2^(-"y")`
On separating the variables, we get
`"dy"/(2^(-"y"))` = dx
⇒ 2y dy = dx
On integrating both sides, we get
`∫ 2^"y" "dy" = ∫ "dx"`
⇒ `(2^"y")/(log 2) = "x" + "c"_1`
⇒ 2y = x log 2 + c1 log 2
∴ 2y = x log 2 + c
where c = c1 log 2
APPEARS IN
संबंधित प्रश्न
Solve the following differential equation: `(x^2-1)dy/dx+2xy=2/(x^2-1)`
Find the integrating factor for the following differential equation:`x logx dy/dx+y=2log x`
Find the integrating factor of the differential equation.
`((e^(-2^sqrtx))/sqrtx-y/sqrtx)dy/dx=1`
\[\frac{dy}{dx}\] = y tan x − 2 sin x
\[\frac{dy}{dx}\] + y tan x = cos x
\[\frac{dy}{dx}\] + y cot x = x2 cot x + 2x
The decay rate of radium at any time t is proportional to its mass at that time. Find the time when the mass will be halved of its initial mass.
Solve the differential equation: (x + 1) dy – 2xy dx = 0
Solve the differential equation: (1 + x2) dy + 2xy dx = cot x dx
`("d"y)/("d"x) + y/(xlogx) = 1/x` is an equation of the type ______.
Correct substitution for the solution of the differential equation of the type `("d"y)/("d"x) = "f"(x, y)`, where f(x, y) is a homogeneous function of zero degree is y = vx.
Polio drops are delivered to 50 K children in a district. The rate at which polio drops are given is directly proportional to the number of children who have not been administered the drops. By the end of 2nd week half the children have been given the polio drops. How many will have been given the drops by the end of 3rd week can be estimated using the solution to the differential equation `"dy"/"dx" = "k"(50 - "y")` where x denotes the number of weeks and y the number of children who have been given the drops.
Which of the following solutions may be used to find the number of children who have been given the polio drops?
Form the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis.
If y = y(x) is the solution of the differential equation `(1 + e^(2x))(dy)/(dx) + 2(1 + y^2)e^x` = 0 and y(0) = 0, then `6(y^'(0) + (y(log_esqrt(3))))^2` is equal to ______.
If y = f(x), f'(0) = f(0) = 1 and if y = f(x) satisfies `(d^2y)/(dx^2) + (dy)/(dx)` = x, then the value of [f(1)] is ______ (where [.] denotes greatest integer function)
The solution of the differential equation `(1 + y^2) + (x - e^(tan^-1y)) (dy)/(dx)` = 0, is ______.