Advertisements
Advertisements
प्रश्न
If y = f(x), f'(0) = f(0) = 1 and if y = f(x) satisfies `(d^2y)/(dx^2) + (dy)/(dx)` = x, then the value of [f(1)] is ______ (where [.] denotes greatest integer function)
पर्याय
0.00
1.00
2.00
3.00
MCQ
रिकाम्या जागा भरा
उत्तर
If y = f(x), f'(0) = f(0) = 1 and if y = f(x) satisfies `(d^2y)/(dx^2) + (dy)/(dx)` = x, then the value of [f(1)] is 1.00 (where [.] denotes greatest integer function)
Explanation:
`(d^2y)/(dx^2) + (dy)/(dx)` = x
Let `(dy)/(dx)` = t
⇒ `(d^2y)/(dx^2) = (dt)/(dx)`
⇒ `(dt)/(dx) + t` = x
⇒ tex = `intxe^x dx + c`
⇒ tex = xex – ex + c
⇒ `(dy)/(dx)` = x – 1 + ce–x
y'(0) = 1
⇒ c = 2
⇒ `(dy)/(dx)` = 2e–x + x – 1
⇒ y = `-2e^-x + x^2/2 - x + c`
⇒ y(0) = 1
⇒ c = 3
⇒ y(1) = `-2/e + 1/2 - 1 + 3`
⇒ [y(1)] = 1
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?