हिंदी

If y = f(x), f'(0) = f(0) = 1 and if y = f(x) satisfies d2ydx2+dydx = x, then the value of [f(1)] is ______ (where [.] denotes greatest integer function) -

Advertisements
Advertisements

प्रश्न

If y = f(x), f'(0) = f(0) = 1 and if y = f(x) satisfies `(d^2y)/(dx^2) + (dy)/(dx)` = x, then the value of [f(1)] is ______ (where [.] denotes greatest integer function)

विकल्प

  • 0.00

  • 1.00

  • 2.00

  • 3.00

MCQ
रिक्त स्थान भरें

उत्तर

If y = f(x), f'(0) = f(0) = 1 and if y = f(x) satisfies `(d^2y)/(dx^2) + (dy)/(dx)` = x, then the value of [f(1)] is 1.00 (where [.] denotes greatest integer function)

Explanation:

`(d^2y)/(dx^2) + (dy)/(dx)` = x

Let `(dy)/(dx)` = t

⇒ `(d^2y)/(dx^2) = (dt)/(dx)`

⇒ `(dt)/(dx) + t` = x

⇒ tex = `intxe^x dx + c`

⇒ tex = xex – ex + c

⇒ `(dy)/(dx)` = x – 1 + ce–x 

y'(0) = 1

⇒ c = 2

⇒ `(dy)/(dx)` = 2e–x + x – 1

⇒ y = `-2e^-x + x^2/2 - x + c`

⇒ y(0) = 1

⇒ c = 3

⇒ y(1) = `-2/e + 1/2 - 1 + 3`

⇒ [y(1)] = 1

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×