Advertisements
Advertisements
प्रश्न
Solve the differential equation: (x + 1) dy – 2xy dx = 0
उत्तर
(x + 1) dy - 2xy dx = 0
`("dy")/("dx") = (2"xy")/(x + 1)`
`(1)/(y) "dy" = (( 2x)/ (x+1)) dx`
`(1)/(y) "dy" = (( 2x + 2 - 2)/ (x+1)) dx`
`(1)/(y) "dy" = [ (2( x+ 1)) /((x + 1)) - (2)/((x+1))] dx`
`int_ (1)/(y) "dy" = int_ 2dx - int_ (2)/((x+1)) dx`
log | y | = 2x - 2 log | x - 1 | + c
APPEARS IN
संबंधित प्रश्न
Solve the following differential equation: `(x^2-1)dy/dx+2xy=2/(x^2-1)`
Find the integrating factor of the differential equation.
`((e^(-2^sqrtx))/sqrtx-y/sqrtx)dy/dx=1`
Solve the differential equation ` (1 + x2) dy/dx+y=e^(tan^(−1))x.`
\[\frac{dy}{dx}\] = y tan x − 2 sin x
The decay rate of radium at any time t is proportional to its mass at that time. Find the time when the mass will be halved of its initial mass.
Experiments show that radium disintegrates at a rate proportional to the amount of radium present at the moment. Its half-life is 1590 years. What percentage will disappear in one year?
Solve the following differential equation :
`"dy"/"dx" + "y" = cos"x" - sin"x"`
Solve the differential equation `"dy"/"dx" + y/x` = x2.
Integrating factor of the differential equation of the form `("d"x)/("d"y) + "P"_1x = "Q"_1` is given by `"e"^(int P_1dy)`.
Correct substitution for the solution of the differential equation of the type `("d"y)/("d"x) = "f"(x, y)`, where f(x, y) is a homogeneous function of zero degree is y = vx.
Correct substitution for the solution of the differential equation of the type `("d"x)/("d"y) = "g"(x, y)` where g(x, y) is a homogeneous function of the degree zero is x = vy.
If ex + ey = ex+y, then `"dy"/"dx"` is:
Form the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis.
Find the general solution of the differential equation: (x3 + y3)dy = x2ydx
Let y = y(x) be the solution of the differential equation `(dy)/(dx) + (sqrt(2)y)/(2cos^4x - cos2x) = xe^(tan^-1(sqrt(2)cost2x)), 0 < x < π/2` with `y(π/4) = π^2/32`. If `y(π/3) = π^2/18e^(-tan^-1(α))`, then the value of 3α2 is equal to ______.
If y = y(x) is the solution of the differential equation `(1 + e^(2x))(dy)/(dx) + 2(1 + y^2)e^x` = 0 and y(0) = 0, then `6(y^'(0) + (y(log_esqrt(3))))^2` is equal to ______.
The population P = P(t) at time 't' of a certain species follows the differential equation `("dp")/("dt")` = 0.5P – 450. If P(0) = 850, then the time at which population becomes zero is ______.
Let y = y(x) be the solution of the differential equation `xtan(y/x)dy = (ytan(y/x) - x)dx, -1 ≤ x ≤ 1, y(1/2) = π/6`. Then the area of the region bounded by the curves x = 0, x = `1/sqrt(2)` and y = y(x) in the upper half plane is ______.
Let y = y(x) be the solution of the differential equation, `(2 + sinxdy)/(y + 1) (dy)/(dx)` = –cosx. If y > 0, y(0) = 1. If y(π) = a, and `(dy)/(dx)` at x = π is b, then the ordered pair (a, b) is equal to ______.