हिंदी

Solve the Differential Equation: (X + 1) Dy – 2xy Dx = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the differential equation: (x + 1) dy – 2xy dx = 0

योग

उत्तर

(x + 1) dy - 2xy dx = 0

`("dy")/("dx") = (2"xy")/(x + 1)`

`(1)/(y) "dy" = (( 2x)/ (x+1)) dx`

`(1)/(y) "dy" = (( 2x + 2 - 2)/ (x+1)) dx`

`(1)/(y) "dy" = [ (2( x+ 1)) /((x + 1)) - (2)/((x+1))] dx`

`int_  (1)/(y) "dy" = int_  2dx - int_  (2)/((x+1)) dx`

log | y | = 2x - 2 log | x - 1 | + c

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2013-2014 (March)

APPEARS IN

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Find the integrating factor of the differential equation.

`((e^(-2^sqrtx))/sqrtx-y/sqrtx)dy/dx=1`


Solve `sin x dy/dx - y = sin x.tan  x/2`


Solve the differential equation `sin^(-1) (dy/dx) = x + y`


\[x\frac{dy}{dx} = x + y\]

\[\frac{dy}{dx} + \frac{4x}{x^2 + 1}y + \frac{1}{\left( x^2 + 1 \right)^2} = 0\]

\[\frac{dy}{dx} + \frac{y}{x} = x^3\]

\[\left( 1 + x^2 \right)\frac{dy}{dx} + y = \tan^{- 1} x\]

\[\frac{dy}{dx}\] + y tan x = cos x


\[\left( 1 + y^2 \right) + \left( x - e^{tan^{- 1} y} \right)\frac{dy}{dx} = 0\]

Find the equation of the curve passing through the point (0, 2) given that the sum of the coordinates of any point on the curve exceeds the magnitude of the slope of the tangent to the curve at that point by 5.


Solve the differential equation: (1 + x2) dy + 2xy dx = cot x dx


`"dy"/"dx" + y` = 5 is a differential equation of the type `"dy"/"dx" + "P"y` = Q but it can be solved using variable separable method also.


`("d"y)/("d"x) + y/(xlogx) = 1/x` is an equation of the type ______.


Solution of the differential equation of the type `("d"x)/("d"y) + "p"_1x = "Q"_1` is given by x.I.F. = `("I"."F") xx "Q"_1"d"y`.


Correct substitution for the solution of the differential equation of the type `("d"x)/("d"y) = "g"(x, y)` where g(x, y) is a homogeneous function of the degree zero is x = vy.


If ex + ey = ex+y, then `"dy"/"dx"` is:


Polio drops are delivered to 50 K children in a district. The rate at which polio drops are given is directly proportional to the number of children who have not been administered the drops. By the end of 2nd week half the children have been given the polio drops. How many will have been given the drops by the end of 3rd week can be estimated using the solution to the differential equation `"dy"/"dx" = "k"(50 - "y")` where x denotes the number of weeks and y the number of children who have been given the drops.

The solution of the differential equation `"dy"/"dx" = "k"(50 - "y")` is given by ______.


The solution of the differential equation `(dx)/(dy) + Px = Q` where P and Q are constants or functions of y, is given by


If α, β are different values of x satisfying the equation a cos x + b sinα x = c, where a, b and c are constants, then `tan ((alpha + beta)/2)` is


Form the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis.


Solve the differential equation: xdy – ydx = `sqrt(x^2 + y^2)dx`


Solve the following differential equation: (y – sin2x)dx + tanx dy = 0


Let y = y(x) be the solution of the differential equation `(dy)/(dx) + (sqrt(2)y)/(2cos^4x - cos2x) = xe^(tan^-1(sqrt(2)cost2x)), 0 < x < π/2` with `y(π/4) = π^2/32`. If `y(π/3) = π^2/18e^(-tan^-1(α))`, then the value of 3α2 is equal to ______.


Let y = y(x) be the solution of the differential equation `e^xsqrt(1 - y^2)dx + (y/x)dy` = 0, y(1) = –1. Then, the value of (y(3))2 is equal to ______.


Let y = y(x) be the solution of the differential equation, `(2 + sinxdy)/(y + 1) (dy)/(dx)` = –cosx. If y > 0, y(0) = 1. If y(π) = a, and `(dy)/(dx)` at x = π is b, then the ordered pair (a, b) is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×