Advertisements
Advertisements
प्रश्न
Find the equation of the curve passing through the point (0, 2) given that the sum of the coordinates of any point on the curve exceeds the magnitude of the slope of the tangent to the curve at that point by 5.
उत्तर
According to the question,
\[\text{ Comparing with }\frac{dy}{dx} + Py = Q, \text{ we get }\]
\[P = - 1 \]
\[Q = x - 5\]
Now,
\[\text{ I . F . }= e^{- \int dx} = e^{- x} \]
So, the solution is given by
\[y \times I . F . = \int Q \times I . F . dx + C\]
\[ \Rightarrow y e^{- x} = \int\left( x - 5 \right) e^{- x} dx + C\]

\[ \Rightarrow y e^{- x} = x\int e^{- x} dx - \int\left[ \frac{d}{dx}\left( x \right)\int e^{- x} dx \right]dx + 5 e^{- x} + C\]
\[ \Rightarrow y e^{- x} = - x e^{- x} + \int e^{- x} dx + 5 e^{- x} + C\]
\[ \Rightarrow y e^{- x} = - x e^{- x} - e^{- x} + 5 e^{- x} + C\]
\[ \Rightarrow y e^{- x} = - x e^{- x} + 4 e^{- x} + C\]
Since the curve passes throught the point 0, 2, it satisfies the equation of the curve.
\[2 e^0 = - 0 e^0 + 4 e^0 + C\]
\[ \Rightarrow C = - 2\]
Putting the value of C in the equation of the curve, we get
\[y e^{- x} = - x e^{- x} + 4 e^{- x} - 2\]
\[ \Rightarrow y = - x + 4 - 2 e^x \]
\[ \Rightarrow y = 4 - x - 2 e^x\]
APPEARS IN
संबंधित प्रश्न
Solve `sin x dy/dx - y = sin x.tan x/2`
Solve the differential equation `sin^(-1) (dy/dx) = x + y`
\[\frac{dy}{dx}\] = y tan x − 2 sin x
The slope of the tangent to the curve at any point is the reciprocal of twice the ordinate at that point. The curve passes through the point (4, 3). Determine its equation.
The decay rate of radium at any time t is proportional to its mass at that time. Find the time when the mass will be halved of its initial mass.
Experiments show that radium disintegrates at a rate proportional to the amount of radium present at the moment. Its half-life is 1590 years. What percentage will disappear in one year?
Solve the differential equation: (x + 1) dy – 2xy dx = 0
Solve the differential equation: (1 + x2) dy + 2xy dx = cot x dx
Solve the differential equation : `"x"(d"y")/(d"x") + "y" - "x" + "xy"cot"x" = 0; "x" != 0.`
Solve the following differential equation :
`"dy"/"dx" + "y" = cos"x" - sin"x"`
`"dy"/"dx" + y` = 5 is a differential equation of the type `"dy"/"dx" + "P"y` = Q but it can be solved using variable separable method also.
Correct substitution for the solution of the differential equation of the type `("d"x)/("d"y) = "g"(x, y)` where g(x, y) is a homogeneous function of the degree zero is x = vy.
Polio drops are delivered to 50 K children in a district. The rate at which polio drops are given is directly proportional to the number of children who have not been administered the drops. By the end of 2nd week half the children have been given the polio drops. How many will have been given the drops by the end of 3rd week can be estimated using the solution to the differential equation `"dy"/"dx" = "k"(50 - "y")` where x denotes the number of weeks and y the number of children who have been given the drops.
The solution of the differential equation `"dy"/"dx" = "k"(50 - "y")` is given by ______.
Polio drops are delivered to 50 K children in a district. The rate at which polio drops are given is directly proportional to the number of children who have not been administered the drops. By the end of 2nd week half the children have been given the polio drops. How many will have been given the drops by the end of 3rd week can be estimated using the solution to the differential equation `"dy"/"dx" = "k"(50 - "y")` where x denotes the number of weeks and y the number of children who have been given the drops.
Which of the following solutions may be used to find the number of children who have been given the polio drops?
If α, β are different values of x satisfying the equation a cos x + b sinα x = c, where a, b and c are constants, then `tan ((alpha + beta)/2)` is
If `x (dy)/(dx) = y(log y - log x + 1)`, then the solution of the dx equation is
Form the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis.
Solve the differential equation: xdy – ydx = `sqrt(x^2 + y^2)dx`
Find the general solution of the differential equation: (x3 + y3)dy = x2ydx
The population P = P(t) at time 't' of a certain species follows the differential equation `("dp")/("dt")` = 0.5P – 450. If P(0) = 850, then the time at which population becomes zero is ______.
Let y = y(x) be the solution of the differential equation `e^xsqrt(1 - y^2)dx + (y/x)dy` = 0, y(1) = –1. Then, the value of (y(3))2 is equal to ______.
Let y = y(x) be the solution of the differential equation, `(2 + sinxdy)/(y + 1) (dy)/(dx)` = –cosx. If y > 0, y(0) = 1. If y(π) = a, and `(dy)/(dx)` at x = π is b, then the ordered pair (a, b) is equal to ______.
Let y = y(x) be the solution of the differential equation, `(x^2 + 1)^2 ("dy")/("d"x) + 2x(x^2 + 1)"y"` = 1, such that y(0) = 0. If `sqrt("ay")(1) = π/32` then the value of 'a' is ______.