हिंदी

Find the general solution of the differential equation: (x3 + y3)dy = x2ydx - Mathematics

Advertisements
Advertisements

प्रश्न

Find the general solution of the differential equation: (x3 + y3)dy = x2ydx

योग

उत्तर

Given differential equation is (x3 + y3)dy = x2ydx

∴ `(dx)/(dy) = (x^3 + y^3)/(x^2y)`  ...(i)

Put x = vy

⇒ `(dx)/(dy) = v + y (dv)/(dy)`

From equation, we have

`v + y (dv)/(dy) = ((vy)^3 + y^3)/((vy)^2y)`

`v + y (dv)/(dy) = (v^3y^3 + y^3)/(v^2y^3)`

`v + y (dv)/(dy) = (v^3 + 1)/v^2`

`y (dv)/(dy) = (v^3 + 1)/v^2 - v`

`y (dv)/(dy) = 1/v^2`

`v^2dv = (dy)/y`   ...(Variable seponation method)

Integrating both sides, we get

`int v^2dv = int (dy)/y`

`v^3/3` = log + C

Putting v = `x/y`, we get

`x^3/(3y^3)` = log + C

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2021-2022 (April) Term 2 - Delhi Set 1

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Solve the following differential equation: `(x^2-1)dy/dx+2xy=2/(x^2-1)`


Find the integrating factor for the following differential equation:`x logx dy/dx+y=2log x`


Find the integrating factor of the differential equation.

`((e^(-2^sqrtx))/sqrtx-y/sqrtx)dy/dx=1`


\[\frac{dy}{dx} + 2y = e^{3x}\]

\[x\frac{dy}{dx} + y = x e^x\]

\[x\frac{dy}{dx} + y = x \log x\]

\[\frac{dy}{dx} + y = \cos x\]

\[\frac{dy}{dx}\] = y tan x − 2 sin x


\[\frac{dy}{dx}\] + y tan x = cos x


\[\left( 1 + y^2 \right) + \left( x - e^{tan^{- 1} y} \right)\frac{dy}{dx} = 0\]

Find the equation of the curve passing through the point (0, 2) given that the sum of the coordinates of any point on the curve exceeds the magnitude of the slope of the tangent to the curve at that point by 5.


A wet porous substance in the open air loses its moisture at a rate proportional to the moisture content. If a sheet hung in the wind loses half of its moisture during the first hour, when will it have lost 95% moisture, weather conditions remaining the same.


Solve the differential equation: (x + 1) dy – 2xy dx = 0


Solve the differential equation: (1 + x2) dy + 2xy dx = cot x dx


Solve the following differential equation :

`"dy"/"dx" + "y" = cos"x" - sin"x"`


`("e"^(-2sqrt(x))/sqrt(x) - y/sqrt(x))("d"x)/("d"y) = 1(x ≠ 0)` when written in the form `"dy"/"dx" + "P"y` = Q, then P = ______.


`"dy"/"dx" + y` = 5 is a differential equation of the type `"dy"/"dx" + "P"y` = Q but it can be solved using variable separable method also.


`("d"y)/("d"x) + y/(xlogx) = 1/x` is an equation of the type ______.


Correct substitution for the solution of the differential equation of the type `("d"x)/("d"y) = "g"(x, y)` where g(x, y) is a homogeneous function of the degree zero is x = vy.


Polio drops are delivered to 50 K children in a district. The rate at which polio drops are given is directly proportional to the number of children who have not been administered the drops. By the end of 2nd week half the children have been given the polio drops. How many will have been given the drops by the end of 3rd week can be estimated using the solution to the differential equation `"dy"/"dx" = "k"(50 - "y")` where x denotes the number of weeks and y the number of children who have been given the drops.

Which of the following solutions may be used to find the number of children who have been given the polio drops?


Form the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis.


The population P = P(t) at time 't' of a certain species follows the differential equation `("dp")/("dt")` = 0.5P – 450. If P(0) = 850, then the time at which population becomes zero is ______.


Let y = y(x) be the solution of the differential equation `xtan(y/x)dy = (ytan(y/x) - x)dx, -1 ≤ x ≤ 1, y(1/2) = π/6`. Then the area of the region bounded by the curves x = 0, x = `1/sqrt(2)` and y = y(x) in the upper half plane is ______.


Let y = y(x) be the solution of the differential equation `e^xsqrt(1 - y^2)dx + (y/x)dy` = 0, y(1) = –1. Then, the value of (y(3))2 is equal to ______.


If y = f(x), f'(0) = f(0) = 1 and if y = f(x) satisfies `(d^2y)/(dx^2) + (dy)/(dx)` = x, then the value of [f(1)] is ______ (where [.] denotes greatest integer function)


Solve the differential equation: 

`dy/dx` = cosec y


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×