हिंदी

Solve the Differential Equation: (1 + X2) Dy + 2xydx = Cot Xdx - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the differential equation: (1 + x2) dy + 2xy dx = cot x dx

योग

उत्तर

The given differential equation is

(1 + x2) dy + 2xy dx = cot x dx

`(d"y")/(d"x") + (2"xy")/(1 + "x"^2) = cot"x"/(1+"x"^2)`

This equation is a linear differential equation of the form:

`dy/dx + py = Q ( "where p" = (2x)/(1 + x^2) and Q = (cot x)/(1 + x^2) )`

`"IF" = e^(int pd"x") = e^(int(2"x")/(1+"x"^2) dx) = e^log(1 + "x"^2) = 1 + x^2`

The general solution of the given differential equation is given by the relation,

y( I.F.) = `int ( "Q" xx "I.F.") dx + C`

⇒ `y(1 + x^2) = int  [ (cot x)/(1+ x^2) (1 + x^2)]dx + C`

⇒ `y(1 + x^2) = int cot x dx + c`

⇒ `y(1 + x^2) = log| sin x | + c`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2018-2019 (March) 65/3/1

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Solve the differential equation `sin^(-1) (dy/dx) = x + y`


\[\frac{dy}{dx} + 2y = e^{3x}\]

\[4\frac{dy}{dx} + 8y = 5 e^{- 3x}\]

\[\frac{dy}{dx} + 2y = 4x\]

\[x\frac{dy}{dx} + y = x e^x\]

\[\frac{dy}{dx} + \frac{4x}{x^2 + 1}y + \frac{1}{\left( x^2 + 1 \right)^2} = 0\]

\[\frac{dy}{dx} + \frac{y}{x} = x^3\]

\[\frac{dy}{dx} + y = \sin x\]

\[\frac{dy}{dx} + 2y = \sin x\]

The decay rate of radium at any time  t is proportional to its mass at that time. Find the time when the mass will be halved of its initial mass.


Experiments show that radium disintegrates at a rate proportional to the amount of radium present at the moment. Its half-life is 1590 years. What percentage will disappear in one year?


A wet porous substance in the open air loses its moisture at a rate proportional to the moisture content. If a sheet hung in the wind loses half of its moisture during the first hour, when will it have lost 95% moisture, weather conditions remaining the same.


Solve the differential equation : `"x"(d"y")/(d"x") + "y" - "x" + "xy"cot"x" = 0; "x" != 0.`


`("e"^(-2sqrt(x))/sqrt(x) - y/sqrt(x))("d"x)/("d"y) = 1(x ≠ 0)` when written in the form `"dy"/"dx" + "P"y` = Q, then P = ______.


`"dy"/"dx" + y` = 5 is a differential equation of the type `"dy"/"dx" + "P"y` = Q but it can be solved using variable separable method also.


`("d"y)/("d"x) + y/(xlogx) = 1/x` is an equation of the type ______.


Correct substitution for the solution of the differential equation of the type `("d"x)/("d"y) = "g"(x, y)` where g(x, y) is a homogeneous function of the degree zero is x = vy.


If ex + ey = ex+y, then `"dy"/"dx"` is:


Polio drops are delivered to 50 K children in a district. The rate at which polio drops are given is directly proportional to the number of children who have not been administered the drops. By the end of 2nd week half the children have been given the polio drops. How many will have been given the drops by the end of 3rd week can be estimated using the solution to the differential equation `"dy"/"dx" = "k"(50 - "y")` where x denotes the number of weeks and y the number of children who have been given the drops.

Which of the following solutions may be used to find the number of children who have been given the polio drops?


Solve the differential equation:

`"dy"/"dx" = 2^(-"y")`


If α, β are different values of x satisfying the equation a cos x + b sinα x = c, where a, b and c are constants, then `tan ((alpha + beta)/2)` is


The solution of the differential equation `(dy)/(dx) = 1 + x + y + xy` when y = 0 at x = – 1 is


`int cos(log x)  dx = F(x) + C` where C is arbitrary constant. Here F(x) =


Solve the differential equation: xdy – ydx = `sqrt(x^2 + y^2)dx`


Let y = y(x) be the solution of the differential equation `xtan(y/x)dy = (ytan(y/x) - x)dx, -1 ≤ x ≤ 1, y(1/2) = π/6`. Then the area of the region bounded by the curves x = 0, x = `1/sqrt(2)` and y = y(x) in the upper half plane is ______.


If y = f(x), f'(0) = f(0) = 1 and if y = f(x) satisfies `(d^2y)/(dx^2) + (dy)/(dx)` = x, then the value of [f(1)] is ______ (where [.] denotes greatest integer function)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×