Advertisements
Advertisements
प्रश्न
उत्तर
We have,
\[\frac{dy}{dx} + y = \sin x . . . . . \left( 1 \right)\]
Clearly, it is a linear differential equation of the form
\[\frac{dy}{dx} + Py = Q\]
where
\[P = 1\]
\[Q = \sin x \]
\[ \therefore \text{I.F.} = e^{\int P\ dx} \]
\[ = e^{\int dx} \]
\[ = e^x \]
\[\text{ Multiplying both sides of }\left( 1 \right) \text{ by }e^x , \text{ we get }\]
\[ e^x \left( \frac{dy}{dx} + y \right) = e^x \sin x\]
\[ \Rightarrow e^x \frac{dy}{dx} + e^x y = e^x \sin x \]
Integrating both sides with respect to x, we get
\[y e^x = \int e^x \sin x dx + C\]
\[ \Rightarrow y e^x = \frac{e^x}{2}\left( \sin x - \cos x \right) + C\]
\[ \Rightarrow y = C e^{- x} + \frac{1}{2}\left( \sin x - \cos x \right)\]
\[\text{Hence, } y = C e^{- x} + \frac{1}{2}\left( \sin x - \cos x \right)\text{ is the required solution.} \]
APPEARS IN
संबंधित प्रश्न
Find the integrating factor for the following differential equation:`x logx dy/dx+y=2log x`
Find the integrating factor of the differential equation.
`((e^(-2^sqrtx))/sqrtx-y/sqrtx)dy/dx=1`
Solve `sin x dy/dx - y = sin x.tan x/2`
The slope of the tangent to the curve at any point is the reciprocal of twice the ordinate at that point. The curve passes through the point (4, 3). Determine its equation.
The decay rate of radium at any time t is proportional to its mass at that time. Find the time when the mass will be halved of its initial mass.
Experiments show that radium disintegrates at a rate proportional to the amount of radium present at the moment. Its half-life is 1590 years. What percentage will disappear in one year?
A wet porous substance in the open air loses its moisture at a rate proportional to the moisture content. If a sheet hung in the wind loses half of its moisture during the first hour, when will it have lost 95% moisture, weather conditions remaining the same.
Solve the differential equation: (1 + x2) dy + 2xy dx = cot x dx
Solve the differential equation : `"x"(d"y")/(d"x") + "y" - "x" + "xy"cot"x" = 0; "x" != 0.`
Solve the differential equation `"dy"/"dx" + y/x` = x2.
Integrating factor of the differential equation of the form `("d"x)/("d"y) + "P"_1x = "Q"_1` is given by `"e"^(int P_1dy)`.
Correct substitution for the solution of the differential equation of the type `("d"y)/("d"x) = "f"(x, y)`, where f(x, y) is a homogeneous function of zero degree is y = vx.
Correct substitution for the solution of the differential equation of the type `("d"x)/("d"y) = "g"(x, y)` where g(x, y) is a homogeneous function of the degree zero is x = vy.
If ex + ey = ex+y, then `"dy"/"dx"` is:
If α, β are different values of x satisfying the equation a cos x + b sinα x = c, where a, b and c are constants, then `tan ((alpha + beta)/2)` is
The solution of the differential equation `(dy)/(dx) = 1 + x + y + xy` when y = 0 at x = – 1 is
`int cos(log x) dx = F(x) + C` where C is arbitrary constant. Here F(x) =
If `x (dy)/(dx) = y(log y - log x + 1)`, then the solution of the dx equation is
Form the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis.
Solve the differential equation: xdy – ydx = `sqrt(x^2 + y^2)dx`
Let y = y(x) be the solution of the differential equation, `(2 + sinxdy)/(y + 1) (dy)/(dx)` = –cosx. If y > 0, y(0) = 1. If y(π) = a, and `(dy)/(dx)` at x = π is b, then the ordered pair (a, b) is equal to ______.
Let y = y(x) be the solution of the differential equation, `(x^2 + 1)^2 ("dy")/("d"x) + 2x(x^2 + 1)"y"` = 1, such that y(0) = 0. If `sqrt("ay")(1) = π/32` then the value of 'a' is ______.
If y = f(x), f'(0) = f(0) = 1 and if y = f(x) satisfies `(d^2y)/(dx^2) + (dy)/(dx)` = x, then the value of [f(1)] is ______ (where [.] denotes greatest integer function)