Advertisements
Advertisements
प्रश्न
Solve `sin x dy/dx - y = sin x.tan x/2`
उत्तर
`dy/dx - y.cosecx = tan x/2`
`dy/dx - y.cosecx = tan x/2`
`dy/dx - y.cosec x = tan x/2` ....(i)
Compare `dy/dx + Py = Q`
P = -cosecx, Q = `tan x/2`
`I.F. = e^(intPdx)`
`I.F. = e^(int-cosecx dx)`
`I.F. = e^(-log_e(cosecx- cotx))`
`I.F. = e^(log_e(cosecx - cot x)^(-1))`
`I.F. = (cosec x - cot x)^(-1) = (cosect x + cot x)`
∴ solution of the linear differential equation
`y.I.F. = int Q.IF.dx`
`y.(cosecx + cotx) = int tan x/2 ((1+cosx)/sinx) dx`
`y.(cosecx - cot x) = int (sin x/2)/(cos x/2) . (2cos^2 x/2)/(2sin x/2 .cos x/2) dx = int 1 dx`
y.(cosec x + cot x) = x + c
APPEARS IN
संबंधित प्रश्न
Solve the following differential equation: `(x^2-1)dy/dx+2xy=2/(x^2-1)`
Find the integrating factor for the following differential equation:`x logx dy/dx+y=2log x`
Find the integrating factor of the differential equation.
`((e^(-2^sqrtx))/sqrtx-y/sqrtx)dy/dx=1`
Solve the differential equation ` (1 + x2) dy/dx+y=e^(tan^(−1))x.`
\[\frac{dy}{dx}\] + y tan x = cos x
Experiments show that radium disintegrates at a rate proportional to the amount of radium present at the moment. Its half-life is 1590 years. What percentage will disappear in one year?
Solve the differential equation: (x + 1) dy – 2xy dx = 0
Solve the differential equation : `"x"(d"y")/(d"x") + "y" - "x" + "xy"cot"x" = 0; "x" != 0.`
Solve the following differential equation :
`"dy"/"dx" + "y" = cos"x" - sin"x"`
Solve the differential equation `"dy"/"dx" + y/x` = x2.
`("d"y)/("d"x) + y/(xlogx) = 1/x` is an equation of the type ______.
Solution of the differential equation of the type `("d"x)/("d"y) + "p"_1x = "Q"_1` is given by x.I.F. = `("I"."F") xx "Q"_1"d"y`.
Correct substitution for the solution of the differential equation of the type `("d"y)/("d"x) = "f"(x, y)`, where f(x, y) is a homogeneous function of zero degree is y = vx.
The solution of the differential equation `(dx)/(dy) + Px = Q` where P and Q are constants or functions of y, is given by
`int cos(log x) dx = F(x) + C` where C is arbitrary constant. Here F(x) =
Form the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis.
Solve the differential equation: xdy – ydx = `sqrt(x^2 + y^2)dx`
Let y = y(x) be the solution of the differential equation `(dy)/(dx) + (sqrt(2)y)/(2cos^4x - cos2x) = xe^(tan^-1(sqrt(2)cost2x)), 0 < x < π/2` with `y(π/4) = π^2/32`. If `y(π/3) = π^2/18e^(-tan^-1(α))`, then the value of 3α2 is equal to ______.
The population P = P(t) at time 't' of a certain species follows the differential equation `("dp")/("dt")` = 0.5P – 450. If P(0) = 850, then the time at which population becomes zero is ______.
Let y = y(x) be the solution of the differential equation, `(2 + sinxdy)/(y + 1) (dy)/(dx)` = –cosx. If y > 0, y(0) = 1. If y(π) = a, and `(dy)/(dx)` at x = π is b, then the ordered pair (a, b) is equal to ______.
If y = f(x), f'(0) = f(0) = 1 and if y = f(x) satisfies `(d^2y)/(dx^2) + (dy)/(dx)` = x, then the value of [f(1)] is ______ (where [.] denotes greatest integer function)