Advertisements
Advertisements
प्रश्न
Solve the differential equation `"dy"/"dx" + y/x` = x2.
उत्तर
The equation is of the type `"dy"/"dx" + "Py"` = Q, which is a linear differential equation.
Now I.F. = `int 1/x "d"x`
= elogx = x.
Therefore, solution of the given differential equation is
y.x = `int x x^2 "d"x`
i.e. yx = `x^4/4 + "c"`
Hence y = `x^3/4 + "c"/x`.
APPEARS IN
संबंधित प्रश्न
Solve `sin x dy/dx - y = sin x.tan x/2`
Solve the differential equation `sin^(-1) (dy/dx) = x + y`
\[\frac{dy}{dx}\] = y tan x − 2 sin x
\[\frac{dy}{dx}\] + y tan x = cos x
The decay rate of radium at any time t is proportional to its mass at that time. Find the time when the mass will be halved of its initial mass.
A wet porous substance in the open air loses its moisture at a rate proportional to the moisture content. If a sheet hung in the wind loses half of its moisture during the first hour, when will it have lost 95% moisture, weather conditions remaining the same.
Solve the differential equation: (x + 1) dy – 2xy dx = 0
Solve the differential equation: (1 + x2) dy + 2xy dx = cot x dx
`("d"y)/("d"x) + y/(xlogx) = 1/x` is an equation of the type ______.
Correct substitution for the solution of the differential equation of the type `("d"y)/("d"x) = "f"(x, y)`, where f(x, y) is a homogeneous function of zero degree is y = vx.
Correct substitution for the solution of the differential equation of the type `("d"x)/("d"y) = "g"(x, y)` where g(x, y) is a homogeneous function of the degree zero is x = vy.
The solution of the differential equation `(dx)/(dy) + Px = Q` where P and Q are constants or functions of y, is given by
The solution of the differential equation `(dy)/(dx) = 1 + x + y + xy` when y = 0 at x = – 1 is
`int cos(log x) dx = F(x) + C` where C is arbitrary constant. Here F(x) =
Solve the differential equation: xdy – ydx = `sqrt(x^2 + y^2)dx`
Find the general solution of the differential equation: (x3 + y3)dy = x2ydx
The population P = P(t) at time 't' of a certain species follows the differential equation `("dp")/("dt")` = 0.5P – 450. If P(0) = 850, then the time at which population becomes zero is ______.
Let y = y(x) be the solution of the differential equation `xtan(y/x)dy = (ytan(y/x) - x)dx, -1 ≤ x ≤ 1, y(1/2) = π/6`. Then the area of the region bounded by the curves x = 0, x = `1/sqrt(2)` and y = y(x) in the upper half plane is ______.
Let y = y(x) be the solution of the differential equation `e^xsqrt(1 - y^2)dx + (y/x)dy` = 0, y(1) = –1. Then, the value of (y(3))2 is equal to ______.
The solution of the differential equation `(1 + y^2) + (x - e^(tan^-1y)) (dy)/(dx)` = 0, is ______.