हिंदी

D Y D X + 2 Y = 6 E X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{dy}{dx} + 2y = 6 e^x\]
योग

उत्तर

We have, 
\[\frac{dy}{dx} + 2y = 6 e^x . . . . . \left( 1 \right)\]
Clearly, it is a linear differential equation of the form 
\[\frac{dy}{dx} + Py = Q\]
where
\[P = 2\]
\[Q = 6 e^x \]
\[ \therefore \text{I.F.} = e^{\int P dx} \]
\[ = e^{\int2 dx} \]
\[ = e^{2x} \]
\[\text{ Multiplying both sides of }\left( 1 \right)\text{ by }e^{2x} ,\text{ we get }\]
\[ e^{2x} \left( \frac{dy}{dx} + 2y \right) = 6 e^{2x} e^x \]
\[ \Rightarrow e^{2x} \frac{dy}{dx} + 2 e^{2x} y = 6 e^{3x} \]
\[\text{ Integrating both sides with respect to x, we get }\]
\[y e^{2x} = 6\int e^{3x} dx + C\]
\[ \Rightarrow y e^{2x} = 6\frac{e^{3x}}{3} + C\]
\[ \Rightarrow y e^{2x} = 2 e^{3x} + C\]
\[\text{ Hence, }y e^{2x} = 2 e^{3x} + C\text{ is the required solution . }\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Exercise 22.10 [पृष्ठ १०६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Exercise 22.10 | Q 3 | पृष्ठ १०६

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Solve the following differential equation: `(x^2-1)dy/dx+2xy=2/(x^2-1)`


Find the integrating factor for the following differential equation:`x logx dy/dx+y=2log x`


\[\frac{dy}{dx} + 2y = e^{3x}\]

\[\frac{dy}{dx} + y = e^{- 2x}\]

\[\frac{dy}{dx} + \frac{4x}{x^2 + 1}y + \frac{1}{\left( x^2 + 1 \right)^2} = 0\]

\[x\frac{dy}{dx} - y = \left( x - 1 \right) e^x\]

\[\frac{dy}{dx} + y = \sin x\]

\[\frac{dy}{dx} + y = \cos x\]

\[\frac{dy}{dx} + 2y = \sin x\]

\[\left( 1 + x^2 \right)\frac{dy}{dx} + y = \tan^{- 1} x\]

\[\frac{dy}{dx}\] + y cot x = x2 cot x + 2x


The decay rate of radium at any time  t is proportional to its mass at that time. Find the time when the mass will be halved of its initial mass.


Experiments show that radium disintegrates at a rate proportional to the amount of radium present at the moment. Its half-life is 1590 years. What percentage will disappear in one year?


A wet porous substance in the open air loses its moisture at a rate proportional to the moisture content. If a sheet hung in the wind loses half of its moisture during the first hour, when will it have lost 95% moisture, weather conditions remaining the same.


Solve the differential equation: (1 + x2) dy + 2xy dx = cot x dx


Solve the differential equation `"dy"/"dx" + y/x` = x2.


`("e"^(-2sqrt(x))/sqrt(x) - y/sqrt(x))("d"x)/("d"y) = 1(x ≠ 0)` when written in the form `"dy"/"dx" + "P"y` = Q, then P = ______.


Integrating factor of the differential equation of the form `("d"x)/("d"y) + "P"_1x = "Q"_1` is given by `"e"^(int P_1dy)`.


Solution of the differential equation of the type `("d"x)/("d"y) + "p"_1x = "Q"_1` is given by x.I.F. = `("I"."F") xx "Q"_1"d"y`.


Correct substitution for the solution of the differential equation of the type `("d"x)/("d"y) = "g"(x, y)` where g(x, y) is a homogeneous function of the degree zero is x = vy.


If ex + ey = ex+y, then `"dy"/"dx"` is:


Polio drops are delivered to 50 K children in a district. The rate at which polio drops are given is directly proportional to the number of children who have not been administered the drops. By the end of 2nd week half the children have been given the polio drops. How many will have been given the drops by the end of 3rd week can be estimated using the solution to the differential equation `"dy"/"dx" = "k"(50 - "y")` where x denotes the number of weeks and y the number of children who have been given the drops.

The solution of the differential equation `"dy"/"dx" = "k"(50 - "y")` is given by ______.


If α, β are different values of x satisfying the equation a cos x + b sinα x = c, where a, b and c are constants, then `tan ((alpha + beta)/2)` is


The solution of the differential equation `(dy)/(dx) = 1 + x + y + xy` when y = 0 at x = – 1 is


Solve the differential equation: xdy – ydx = `sqrt(x^2 + y^2)dx`


Find the general solution of the differential equation: (x3 + y3)dy = x2ydx


If y = y(x) is the solution of the differential equation `(1 + e^(2x))(dy)/(dx) + 2(1 + y^2)e^x` = 0 and y(0) = 0, then `6(y^'(0) + (y(log_esqrt(3))))^2` is equal to ______.


Let y = y(x) be the solution of the differential equation `e^xsqrt(1 - y^2)dx + (y/x)dy` = 0, y(1) = –1. Then, the value of (y(3))2 is equal to ______.


Let y = y(x) be the solution of the differential equation, `(x^2 + 1)^2 ("dy")/("d"x) + 2x(x^2 + 1)"y"` = 1, such that y(0) = 0. If `sqrt("ay")(1) = π/32` then the value of  'a' is ______.


If y = f(x), f'(0) = f(0) = 1 and if y = f(x) satisfies `(d^2y)/(dx^2) + (dy)/(dx)` = x, then the value of [f(1)] is ______ (where [.] denotes greatest integer function)


Solve the differential equation: 

`dy/dx` = cosec y


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×