हिंदी

A Wet Porous Substance in the Open Air Loses Its Moisture at a Rate Proportional to the Moisture Content. If a Sheet Hung in the Wind Loses Half of Its Moisture During the First Hour, - Mathematics

Advertisements
Advertisements

प्रश्न

A wet porous substance in the open air loses its moisture at a rate proportional to the moisture content. If a sheet hung in the wind loses half of its moisture during the first hour, when will it have lost 95% moisture, weather conditions remaining the same.

योग

उत्तर

Let the original amount of moisture in the porous substance be N and the amount of moisture in the porous substance at any time t be P.

\[\text{ Given: }\frac{dP}{dt}\alpha P\]

\[ \Rightarrow \frac{dP}{dt} = - aP\]

\[ \Rightarrow \frac{dP}{P} = - a dt\]

\[ \Rightarrow \log \left| P \right| = - at + C . . . . . \left( 1 \right)\]

Now, P = N at t = 0

Putting P = N and t = 0 in (1), we get

\[\log \left| N \right| = C\]

\[\text{ Putting }C = \log \left| N \right|\text{ in }\left( 1 \right), \text{ we get }\]

\[\log \left| P \right| = - \text{ at }+ \log \left| N \right|\]

\[ \Rightarrow \log \left| \frac{P}{N} \right| = - \text{ at }. . . . . \left( 2 \right)\]

According to the question,

\[P = \frac{1}{2}N\text{ at }t = 1\]

\[\log \left| \frac{N}{2N} \right| = - a\]

\[ \Rightarrow a = \log \left| 2 \right|\]

\[\text{ Putting }a = \log \left| 2 \right|\text{ in }\left( 2 \right),\text{ we get }\]

\[\log \left| \frac{P}{N} \right| = - t \log\left| 2 \right|\]

To find the time when it will loss 95 % moisture, we have

\[P = \left( 1 - 95\%  \right)N = \frac{5}{100}N\]

\[ \therefore \log \left| \frac{5N}{100N} \right| = - t \log \left| 2 \right|\]

\[ \Rightarrow \log 20 = t \log 2\]

\[ \Rightarrow t = \frac{\log 20}{\log 2}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Revision Exercise [पृष्ठ १४८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Revision Exercise | Q 79 | पृष्ठ १४८

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Solve the differential equation ` (1 + x2) dy/dx+y=e^(tan^(−1))x.`


Solve `sin x dy/dx - y = sin x.tan  x/2`


\[4\frac{dy}{dx} + 8y = 5 e^{- 3x}\]

\[\frac{dy}{dx} + 2y = 6 e^x\]

\[\frac{dy}{dx} + y = e^{- 2x}\]

\[\frac{dy}{dx} + \frac{4x}{x^2 + 1}y + \frac{1}{\left( x^2 + 1 \right)^2} = 0\]

\[x\frac{dy}{dx} + y = x \log x\]

\[\frac{dy}{dx} + y = \sin x\]

\[\frac{dy}{dx} + y = \cos x\]

\[\frac{dy}{dx}\] = y tan x − 2 sin x


\[\left( 1 + x^2 \right)\frac{dy}{dx} + y = \tan^{- 1} x\]

The slope of the tangent to the curve at any point is the reciprocal of twice the ordinate at that point. The curve passes through the point (4, 3). Determine its equation.


Solve the differential equation: (1 + x2) dy + 2xy dx = cot x dx


Solve the following differential equation :

`"dy"/"dx" + "y" = cos"x" - sin"x"`


Solve the differential equation `"dy"/"dx" + y/x` = x2.


`("e"^(-2sqrt(x))/sqrt(x) - y/sqrt(x))("d"x)/("d"y) = 1(x ≠ 0)` when written in the form `"dy"/"dx" + "P"y` = Q, then P = ______.


Integrating factor of the differential equation of the form `("d"x)/("d"y) + "P"_1x = "Q"_1` is given by `"e"^(int P_1dy)`.


Solution of the differential equation of the type `("d"x)/("d"y) + "p"_1x = "Q"_1` is given by x.I.F. = `("I"."F") xx "Q"_1"d"y`.


Correct substitution for the solution of the differential equation of the type `("d"x)/("d"y) = "g"(x, y)` where g(x, y) is a homogeneous function of the degree zero is x = vy.


If ex + ey = ex+y, then `"dy"/"dx"` is:


Polio drops are delivered to 50 K children in a district. The rate at which polio drops are given is directly proportional to the number of children who have not been administered the drops. By the end of 2nd week half the children have been given the polio drops. How many will have been given the drops by the end of 3rd week can be estimated using the solution to the differential equation `"dy"/"dx" = "k"(50 - "y")` where x denotes the number of weeks and y the number of children who have been given the drops.

The solution of the differential equation `"dy"/"dx" = "k"(50 - "y")` is given by ______.


If α, β are different values of x satisfying the equation a cos x + b sinα x = c, where a, b and c are constants, then `tan ((alpha + beta)/2)` is


`int cos(log x)  dx = F(x) + C` where C is arbitrary constant. Here F(x) =


If `x (dy)/(dx) = y(log y - log x + 1)`, then the solution of the dx equation is


Let y = y(x) be the solution of the differential equation `(dy)/(dx) + (sqrt(2)y)/(2cos^4x - cos2x) = xe^(tan^-1(sqrt(2)cost2x)), 0 < x < π/2` with `y(π/4) = π^2/32`. If `y(π/3) = π^2/18e^(-tan^-1(α))`, then the value of 3α2 is equal to ______.


If y = y(x) is the solution of the differential equation `(1 + e^(2x))(dy)/(dx) + 2(1 + y^2)e^x` = 0 and y(0) = 0, then `6(y^'(0) + (y(log_esqrt(3))))^2` is equal to ______.


Let y = y(x) be the solution of the differential equation `xtan(y/x)dy = (ytan(y/x) - x)dx, -1 ≤ x ≤ 1, y(1/2) = π/6`. Then the area of the region bounded by the curves x = 0, x = `1/sqrt(2)` and y = y(x) in the upper half plane is ______.


Let y = y(x) be the solution of the differential equation `e^xsqrt(1 - y^2)dx + (y/x)dy` = 0, y(1) = –1. Then, the value of (y(3))2 is equal to ______.


Let y = y(x) be the solution of the differential equation, `(2 + sinxdy)/(y + 1) (dy)/(dx)` = –cosx. If y > 0, y(0) = 1. If y(π) = a, and `(dy)/(dx)` at x = π is b, then the ordered pair (a, b) is equal to ______.


Let y = y(x) be the solution of the differential equation, `(x^2 + 1)^2 ("dy")/("d"x) + 2x(x^2 + 1)"y"` = 1, such that y(0) = 0. If `sqrt("ay")(1) = π/32` then the value of  'a' is ______.


The solution of the differential equation `(1 + y^2) + (x - e^(tan^-1y)) (dy)/(dx)` = 0, is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×