हिंदी

X D Y D X + Y = X Log X - Mathematics

Advertisements
Advertisements

प्रश्न

\[x\frac{dy}{dx} + y = x \log x\]
योग

उत्तर

We have,
\[x\frac{dy}{dx} + y = x \log x\]
Dividing both sides by x, we get

\[\frac{dy}{dx} + \frac{y}{x} = \log x\]

\[\text{ Comparing with }\frac{dy}{dx} + Py = Q,\text{ we get }\]

\[P = \frac{1}{x}\]

\[Q = \log x\]

Now, 

\[\text{I.F.} = e^{\int P\ dx} = e^{\int\frac{1}{x}dx} \]

\[ = e^{log\left| x \right|} \]

\[ = x\]

So, the solution is given by

\[y \times \text{I.F.} = \int Q \times \text{I.F.} dx + C\]

\[ \Rightarrow xy = \log x\int xdx - \int\left[ \frac{d}{dx}\left( \log x \right)\int x dx \right]dx + C\]

\[ \Rightarrow xy = \frac{x^2 \log x}{2} - \int\frac{x}{2}dx + C\]

\[ \Rightarrow xy = \frac{x^2 \log x}{2} - \frac{x^2}{4} + C\]

\[ \Rightarrow 4xy = 2 x^2 \log x - x^2 + K ..........\left(\text{where, }K = 2C \right)\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Exercise 22.10 [पृष्ठ १०६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Exercise 22.10 | Q 9 | पृष्ठ १०६

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Solve the following differential equation: `(x^2-1)dy/dx+2xy=2/(x^2-1)`


Solve `sin x dy/dx - y = sin x.tan  x/2`


\[\frac{dy}{dx} + 2y = e^{3x}\]

\[x\frac{dy}{dx} = x + y\]

\[\frac{dy}{dx} + 2y = 4x\]

\[x\frac{dy}{dx} + y = x e^x\]

\[x\frac{dy}{dx} - y = \left( x - 1 \right) e^x\]

\[\frac{dy}{dx} + \frac{y}{x} = x^3\]

\[\frac{dy}{dx} + y = \sin x\]

\[\frac{dy}{dx} + y = \cos x\]

\[\frac{dy}{dx} + 2y = \sin x\]

The slope of the tangent to the curve at any point is the reciprocal of twice the ordinate at that point. The curve passes through the point (4, 3). Determine its equation.


Experiments show that radium disintegrates at a rate proportional to the amount of radium present at the moment. Its half-life is 1590 years. What percentage will disappear in one year?


Solve the differential equation: (x + 1) dy – 2xy dx = 0


Solve the differential equation : `"x"(d"y")/(d"x") + "y" - "x" + "xy"cot"x" = 0; "x" != 0.`


`"dy"/"dx" + y` = 5 is a differential equation of the type `"dy"/"dx" + "P"y` = Q but it can be solved using variable separable method also.


`("d"y)/("d"x) + y/(xlogx) = 1/x` is an equation of the type ______.


Solution of the differential equation of the type `("d"x)/("d"y) + "p"_1x = "Q"_1` is given by x.I.F. = `("I"."F") xx "Q"_1"d"y`.


If ex + ey = ex+y, then `"dy"/"dx"` is:


Solve the differential equation:

`"dy"/"dx" = 2^(-"y")`


The solution of the differential equation `(dx)/(dy) + Px = Q` where P and Q are constants or functions of y, is given by


If α, β are different values of x satisfying the equation a cos x + b sinα x = c, where a, b and c are constants, then `tan ((alpha + beta)/2)` is


The solution of the differential equation `(dy)/(dx) = 1 + x + y + xy` when y = 0 at x = – 1 is


Solve the differential equation: xdy – ydx = `sqrt(x^2 + y^2)dx`


Solve the following differential equation: (y – sin2x)dx + tanx dy = 0


Find the general solution of the differential equation: (x3 + y3)dy = x2ydx


Let y = y(x) be the solution of the differential equation `e^xsqrt(1 - y^2)dx + (y/x)dy` = 0, y(1) = –1. Then, the value of (y(3))2 is equal to ______.


Let y = y(x) be the solution of the differential equation, `(x^2 + 1)^2 ("dy")/("d"x) + 2x(x^2 + 1)"y"` = 1, such that y(0) = 0. If `sqrt("ay")(1) = π/32` then the value of  'a' is ______.


The solution of the differential equation `(1 + y^2) + (x - e^(tan^-1y)) (dy)/(dx)` = 0, is ______.


Solve the differential equation: 

`dy/dx` = cosec y


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×