हिंदी

Solve the following differential equation: (x^2-1)dy/dx+2xy=2/(x^2-1) - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following differential equation: `(x^2-1)dy/dx+2xy=2/(x^2-1)`

उत्तर

we have:

`dy/dx+2x/(x^2-1)y=2/(x^2-1)^2`

This is a linear differential equation of the form `dy/dx+Py=Q` ,where `P=(2x)/(x^2-1) and Q=2/(x^2-1)^2`

`I.f=e^(intPdx)=e^(int(2x)/(x^2-1)dx)=e^(log(x^2-1))=(x^2-1)`

Hence, the solution of the differential equation is given by

`y.(x^2−1)=∫2/(x^2−1)^2×x(x2−1) dx + C`

`y.(x^2−1)=∫2/(x^2−1) dx + C`

We know that,

`∫dx/(x^2−a^2)=1/(2a)log∣(x−1)/(x+1)∣`

`y.(x^2−1)=2xx1/2log∣(x−1)/(x+1)∣+C`


 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2013-2014 (March) Delhi Set 1

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Find the integrating factor for the following differential equation:`x logx dy/dx+y=2log x`


Find the integrating factor of the differential equation.

`((e^(-2^sqrtx))/sqrtx-y/sqrtx)dy/dx=1`


\[\frac{dy}{dx} + 2y = e^{3x}\]

\[\frac{dy}{dx} + 2y = 6 e^x\]

\[\frac{dy}{dx} + y = e^{- 2x}\]

\[x\frac{dy}{dx} = x + y\]

\[\frac{dy}{dx} + 2y = 4x\]

\[\frac{dy}{dx} + \frac{y}{x} = x^3\]

\[\frac{dy}{dx} + y = \sin x\]

\[\frac{dy}{dx} + y = \cos x\]

\[\frac{dy}{dx}\] = y tan x − 2 sin x


\[\left( 1 + x^2 \right)\frac{dy}{dx} + y = \tan^{- 1} x\]

Find the equation of the curve passing through the point (0, 2) given that the sum of the coordinates of any point on the curve exceeds the magnitude of the slope of the tangent to the curve at that point by 5.


The slope of the tangent to the curve at any point is the reciprocal of twice the ordinate at that point. The curve passes through the point (4, 3). Determine its equation.


The decay rate of radium at any time  t is proportional to its mass at that time. Find the time when the mass will be halved of its initial mass.


Experiments show that radium disintegrates at a rate proportional to the amount of radium present at the moment. Its half-life is 1590 years. What percentage will disappear in one year?


Solve the following differential equation :

`"dy"/"dx" + "y" = cos"x" - sin"x"`


Solve the differential equation `"dy"/"dx" + y/x` = x2.


`"dy"/"dx" + y` = 5 is a differential equation of the type `"dy"/"dx" + "P"y` = Q but it can be solved using variable separable method also.


Correct substitution for the solution of the differential equation of the type `("d"x)/("d"y) = "g"(x, y)` where g(x, y) is a homogeneous function of the degree zero is x = vy.


If ex + ey = ex+y, then `"dy"/"dx"` is:


If α, β are different values of x satisfying the equation a cos x + b sinα x = c, where a, b and c are constants, then `tan ((alpha + beta)/2)` is


`int cos(log x)  dx = F(x) + C` where C is arbitrary constant. Here F(x) =


Solve the following differential equation: (y – sin2x)dx + tanx dy = 0


If y = y(x) is the solution of the differential equation `(1 + e^(2x))(dy)/(dx) + 2(1 + y^2)e^x` = 0 and y(0) = 0, then `6(y^'(0) + (y(log_esqrt(3))))^2` is equal to ______.


Let y = y(x) be the solution of the differential equation `xtan(y/x)dy = (ytan(y/x) - x)dx, -1 ≤ x ≤ 1, y(1/2) = π/6`. Then the area of the region bounded by the curves x = 0, x = `1/sqrt(2)` and y = y(x) in the upper half plane is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×