Advertisements
Advertisements
Question
Solve the following differential equation: `(x^2-1)dy/dx+2xy=2/(x^2-1)`
Solution
we have:
`dy/dx+2x/(x^2-1)y=2/(x^2-1)^2`
This is a linear differential equation of the form `dy/dx+Py=Q` ,where `P=(2x)/(x^2-1) and Q=2/(x^2-1)^2`
`I.f=e^(intPdx)=e^(int(2x)/(x^2-1)dx)=e^(log(x^2-1))=(x^2-1)`
Hence, the solution of the differential equation is given by
`y.(x^2−1)=∫2/(x^2−1)^2×x(x2−1) dx + C`
`y.(x^2−1)=∫2/(x^2−1) dx + C`
We know that,
`∫dx/(x^2−a^2)=1/(2a)log∣(x−1)/(x+1)∣`
`y.(x^2−1)=2xx1/2log∣(x−1)/(x+1)∣+C`
APPEARS IN
RELATED QUESTIONS
Find the integrating factor of the differential equation.
`((e^(-2^sqrtx))/sqrtx-y/sqrtx)dy/dx=1`
Solve `sin x dy/dx - y = sin x.tan x/2`
\[\frac{dy}{dx}\] = y tan x − 2 sin x
\[\frac{dy}{dx}\] + y cot x = x2 cot x + 2x
The decay rate of radium at any time t is proportional to its mass at that time. Find the time when the mass will be halved of its initial mass.
`("d"y)/("d"x) + y/(xlogx) = 1/x` is an equation of the type ______.
If ex + ey = ex+y, then `"dy"/"dx"` is:
Polio drops are delivered to 50 K children in a district. The rate at which polio drops are given is directly proportional to the number of children who have not been administered the drops. By the end of 2nd week half the children have been given the polio drops. How many will have been given the drops by the end of 3rd week can be estimated using the solution to the differential equation `"dy"/"dx" = "k"(50 - "y")` where x denotes the number of weeks and y the number of children who have been given the drops.
Which of the following solutions may be used to find the number of children who have been given the polio drops?
Solve the differential equation:
`"dy"/"dx" = 2^(-"y")`
The solution of the differential equation `(dx)/(dy) + Px = Q` where P and Q are constants or functions of y, is given by
If α, β are different values of x satisfying the equation a cos x + b sinα x = c, where a, b and c are constants, then `tan ((alpha + beta)/2)` is
Solve the differential equation: xdy – ydx = `sqrt(x^2 + y^2)dx`
The population P = P(t) at time 't' of a certain species follows the differential equation `("dp")/("dt")` = 0.5P – 450. If P(0) = 850, then the time at which population becomes zero is ______.
Let y = y(x) be the solution of the differential equation `xtan(y/x)dy = (ytan(y/x) - x)dx, -1 ≤ x ≤ 1, y(1/2) = π/6`. Then the area of the region bounded by the curves x = 0, x = `1/sqrt(2)` and y = y(x) in the upper half plane is ______.
Let y = y(x) be the solution of the differential equation `e^xsqrt(1 - y^2)dx + (y/x)dy` = 0, y(1) = –1. Then, the value of (y(3))2 is equal to ______.
Let y = y(x) be the solution of the differential equation, `(2 + sinxdy)/(y + 1) (dy)/(dx)` = –cosx. If y > 0, y(0) = 1. If y(π) = a, and `(dy)/(dx)` at x = π is b, then the ordered pair (a, b) is equal to ______.
Let y = y(x) be the solution of the differential equation, `(x^2 + 1)^2 ("dy")/("d"x) + 2x(x^2 + 1)"y"` = 1, such that y(0) = 0. If `sqrt("ay")(1) = π/32` then the value of 'a' is ______.