Advertisements
Advertisements
Question
Solution
We have,
\[x\frac{dy}{dx} - y = \left( x - 1 \right) e^x \]
\[ \Rightarrow \frac{dy}{dx} - \frac{1}{x}y = \left( \frac{x - 1}{x} \right) e^x . . . . . \left( 1 \right)\]
Clearly, it is a linear differential equation of the form
\[\frac{dy}{dx} + Py = Q\]
where
\[P = - \frac{1}{x} \]
\[Q = \left( \frac{x - 1}{x} \right) e^x \]
\[ \therefore \text{I.F.} = e^{\int P\ dx} \]
\[ = e^{- \int\frac{1}{x} dx} \]
\[ = e^{- \log x} \]
\[ = \frac{1}{x}\]
\[\text{Multiplying both sides of } \left( 1 \right)\text{ by I.F.} = \frac{1}{x},\text{ we get }\]
\[\frac{1}{x} \left( \frac{dy}{dx} - \frac{1}{x}y \right) = \frac{1}{x}\left( \frac{x - 1}{x} \right) e^x \]
\[ \Rightarrow \frac{1}{x}\frac{dy}{dx} - \frac{1}{x^2}y = \left( \frac{x - 1}{x^2} \right) e^x \]
Integrating both sides with respect to x, we get
\[\frac{1}{x}y = \int\left( \frac{1}{x} - \frac{1}{x^2} \right) e^x dx + C\]
\[ \Rightarrow \frac{1}{x}y = \frac{e^x}{x} + C\]
\[ \Rightarrow y = e^x + Cx\]
\[\text{ Hence, }y = e^x + Cx\text{ is the required solution }.\]
APPEARS IN
RELATED QUESTIONS
Solve the following differential equation: `(x^2-1)dy/dx+2xy=2/(x^2-1)`
Find the integrating factor for the following differential equation:`x logx dy/dx+y=2log x`
Find the integrating factor of the differential equation.
`((e^(-2^sqrtx))/sqrtx-y/sqrtx)dy/dx=1`
Solve the differential equation ` (1 + x2) dy/dx+y=e^(tan^(−1))x.`
Solve `sin x dy/dx - y = sin x.tan x/2`
Solve the differential equation `sin^(-1) (dy/dx) = x + y`
\[\frac{dy}{dx}\] = y tan x − 2 sin x
\[\frac{dy}{dx}\] + y cot x = x2 cot x + 2x
The slope of the tangent to the curve at any point is the reciprocal of twice the ordinate at that point. The curve passes through the point (4, 3). Determine its equation.
Experiments show that radium disintegrates at a rate proportional to the amount of radium present at the moment. Its half-life is 1590 years. What percentage will disappear in one year?
Solve the differential equation: (1 + x2) dy + 2xy dx = cot x dx
Solve the following differential equation :
`"dy"/"dx" + "y" = cos"x" - sin"x"`
`("e"^(-2sqrt(x))/sqrt(x) - y/sqrt(x))("d"x)/("d"y) = 1(x ≠ 0)` when written in the form `"dy"/"dx" + "P"y` = Q, then P = ______.
`("d"y)/("d"x) + y/(xlogx) = 1/x` is an equation of the type ______.
Solution of the differential equation of the type `("d"x)/("d"y) + "p"_1x = "Q"_1` is given by x.I.F. = `("I"."F") xx "Q"_1"d"y`.
Correct substitution for the solution of the differential equation of the type `("d"y)/("d"x) = "f"(x, y)`, where f(x, y) is a homogeneous function of zero degree is y = vx.
Polio drops are delivered to 50 K children in a district. The rate at which polio drops are given is directly proportional to the number of children who have not been administered the drops. By the end of 2nd week half the children have been given the polio drops. How many will have been given the drops by the end of 3rd week can be estimated using the solution to the differential equation `"dy"/"dx" = "k"(50 - "y")` where x denotes the number of weeks and y the number of children who have been given the drops.
The solution of the differential equation `"dy"/"dx" = "k"(50 - "y")` is given by ______.
Polio drops are delivered to 50 K children in a district. The rate at which polio drops are given is directly proportional to the number of children who have not been administered the drops. By the end of 2nd week half the children have been given the polio drops. How many will have been given the drops by the end of 3rd week can be estimated using the solution to the differential equation `"dy"/"dx" = "k"(50 - "y")` where x denotes the number of weeks and y the number of children who have been given the drops.
Which of the following solutions may be used to find the number of children who have been given the polio drops?
Solve the differential equation:
`"dy"/"dx" = 2^(-"y")`
The solution of the differential equation `(dy)/(dx) = 1 + x + y + xy` when y = 0 at x = – 1 is
`int cos(log x) dx = F(x) + C` where C is arbitrary constant. Here F(x) =
If `x (dy)/(dx) = y(log y - log x + 1)`, then the solution of the dx equation is
Form the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis.
Solve the differential equation: xdy – ydx = `sqrt(x^2 + y^2)dx`
Solve the following differential equation: (y – sin2x)dx + tanx dy = 0
Find the general solution of the differential equation: (x3 + y3)dy = x2ydx
Let y = y(x) be the solution of the differential equation `(dy)/(dx) + (sqrt(2)y)/(2cos^4x - cos2x) = xe^(tan^-1(sqrt(2)cost2x)), 0 < x < π/2` with `y(π/4) = π^2/32`. If `y(π/3) = π^2/18e^(-tan^-1(α))`, then the value of 3α2 is equal to ______.
If y = y(x) is the solution of the differential equation `(1 + e^(2x))(dy)/(dx) + 2(1 + y^2)e^x` = 0 and y(0) = 0, then `6(y^'(0) + (y(log_esqrt(3))))^2` is equal to ______.
Let y = y(x) be the solution of the differential equation `e^xsqrt(1 - y^2)dx + (y/x)dy` = 0, y(1) = –1. Then, the value of (y(3))2 is equal to ______.
Let y = y(x) be the solution of the differential equation, `(x^2 + 1)^2 ("dy")/("d"x) + 2x(x^2 + 1)"y"` = 1, such that y(0) = 0. If `sqrt("ay")(1) = π/32` then the value of 'a' is ______.