English

Experiments Show that Radium Disintegrates at a Rate Proportional to the Amount of Radium Present at the Moment. Its Half-life is 1590 Years. What Percentage Will Disappear in One Year? - Mathematics

Advertisements
Advertisements

Question

Experiments show that radium disintegrates at a rate proportional to the amount of radium present at the moment. Its half-life is 1590 years. What percentage will disappear in one year?

Sum

Solution

Let the original amount of radium be N and the amount of radium at any time t be P.

We have,

\[\frac{dP}{dt}\alpha P\]

\[ \Rightarrow \frac{dP}{dt} = - aP\]

\[ \Rightarrow \frac{dP}{P} = - a dt\]

\[ \Rightarrow \log \left| P \right| = - at + C . . . . . \left( 1 \right)\]

Now, P = N at t = 0

Putting P = N and t = 0 in ( 1 ), we get

\[\log \left| N \right| = C\]

\[\text{ Putting C }= \log \left| N \right| \text{ in }\left( 1 \right),\text{ we get }\]

\[\log \left| P \right| = - at + \log \left| N \right|\]

\[ \Rightarrow \log\left| \frac{P}{N} \right| = -\text{ at }. . . . . \left( 2 \right)\]

According to the question,

\[P = \frac{1}{2}\text{ N at t }= 1590\]

\[\log\left| \frac{N}{2N} \right| = - 1590a\]

\[ \Rightarrow a = \frac{1}{1590}\log \left| 2 \right|\]

\[\text{ Putting a }= \frac{1}{1590}\log\left| 2 \right|\text{ in }\left( 2 \right),\text{ we get }\]

\[\log\left| \frac{P}{N} \right| = - \left( \frac{1}{1590}\log\left| 2 \right| \right)t\]

\[\frac{P}{N} = e^{- \frac{\log 2}{1590}t} . . . . . \left( 3 \right)\]

\[\text{ Putting }t = 1 \text{ in }\left( 3 \right)\text{ to find the bacteria after 1 year, we get }\]

\[\frac{P}{N} = e^{- \frac{\log 2}{1590}} \]

\[ \Rightarrow \frac{P}{N} = 0 . 9996\]

\[ \Rightarrow P = 0 . 9996N\]

\[\text{ Percentage of amount disapeared in 1 year }= \left( \frac{N - P}{N} \right) \times 100 % = \frac{N - 0 . 9996N}{N} \times 100 % = 0 . 04 %\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Revision Exercise [Page 148]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Revision Exercise | Q 78 | Page 148

RELATED QUESTIONS

Solve the following differential equation: `(x^2-1)dy/dx+2xy=2/(x^2-1)`


Solve the differential equation ` (1 + x2) dy/dx+y=e^(tan^(−1))x.`


Solve the differential equation `sin^(-1) (dy/dx) = x + y`


\[\frac{dy}{dx} + 2y = e^{3x}\]

\[4\frac{dy}{dx} + 8y = 5 e^{- 3x}\]

\[x\frac{dy}{dx} + y = x e^x\]

\[\frac{dy}{dx} + \frac{4x}{x^2 + 1}y + \frac{1}{\left( x^2 + 1 \right)^2} = 0\]

\[x\frac{dy}{dx} + y = x \log x\]

\[\frac{dy}{dx} + 2y = \sin x\]

\[\frac{dy}{dx}\] = y tan x − 2 sin x


\[\left( 1 + x^2 \right)\frac{dy}{dx} + y = \tan^{- 1} x\]

\[\frac{dy}{dx}\] + y cot x = x2 cot x + 2x


\[\left( 1 + y^2 \right) + \left( x - e^{tan^{- 1} y} \right)\frac{dy}{dx} = 0\]

The slope of the tangent to the curve at any point is the reciprocal of twice the ordinate at that point. The curve passes through the point (4, 3). Determine its equation.


The decay rate of radium at any time  t is proportional to its mass at that time. Find the time when the mass will be halved of its initial mass.


A wet porous substance in the open air loses its moisture at a rate proportional to the moisture content. If a sheet hung in the wind loses half of its moisture during the first hour, when will it have lost 95% moisture, weather conditions remaining the same.


Solve the differential equation: (1 + x2) dy + 2xy dx = cot x dx


Solve the differential equation : `"x"(d"y")/(d"x") + "y" - "x" + "xy"cot"x" = 0; "x" != 0.`


Solve the following differential equation :

`"dy"/"dx" + "y" = cos"x" - sin"x"`


Solve the differential equation `"dy"/"dx" + y/x` = x2.


Integrating factor of the differential equation of the form `("d"x)/("d"y) + "P"_1x = "Q"_1` is given by `"e"^(int P_1dy)`.


Polio drops are delivered to 50 K children in a district. The rate at which polio drops are given is directly proportional to the number of children who have not been administered the drops. By the end of 2nd week half the children have been given the polio drops. How many will have been given the drops by the end of 3rd week can be estimated using the solution to the differential equation `"dy"/"dx" = "k"(50 - "y")` where x denotes the number of weeks and y the number of children who have been given the drops.

Which of the following solutions may be used to find the number of children who have been given the polio drops?


If α, β are different values of x satisfying the equation a cos x + b sinα x = c, where a, b and c are constants, then `tan ((alpha + beta)/2)` is


The solution of the differential equation `(dy)/(dx) = 1 + x + y + xy` when y = 0 at x = – 1 is


`int cos(log x)  dx = F(x) + C` where C is arbitrary constant. Here F(x) =


If `x (dy)/(dx) = y(log y - log x + 1)`, then the solution of the dx equation is


Form the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis.


Solve the differential equation: xdy – ydx = `sqrt(x^2 + y^2)dx`


Find the general solution of the differential equation: (x3 + y3)dy = x2ydx


Let y = y(x) be the solution of the differential equation `(dy)/(dx) + (sqrt(2)y)/(2cos^4x - cos2x) = xe^(tan^-1(sqrt(2)cost2x)), 0 < x < π/2` with `y(π/4) = π^2/32`. If `y(π/3) = π^2/18e^(-tan^-1(α))`, then the value of 3α2 is equal to ______.


Let y = y(x) be the solution of the differential equation `xtan(y/x)dy = (ytan(y/x) - x)dx, -1 ≤ x ≤ 1, y(1/2) = π/6`. Then the area of the region bounded by the curves x = 0, x = `1/sqrt(2)` and y = y(x) in the upper half plane is ______.


Let y = y(x) be the solution of the differential equation `e^xsqrt(1 - y^2)dx + (y/x)dy` = 0, y(1) = –1. Then, the value of (y(3))2 is equal to ______.


Let y = y(x) be the solution of the differential equation, `(2 + sinxdy)/(y + 1) (dy)/(dx)` = –cosx. If y > 0, y(0) = 1. If y(π) = a, and `(dy)/(dx)` at x = π is b, then the ordered pair (a, b) is equal to ______.


Let y = y(x) be the solution of the differential equation, `(x^2 + 1)^2 ("dy")/("d"x) + 2x(x^2 + 1)"y"` = 1, such that y(0) = 0. If `sqrt("ay")(1) = π/32` then the value of  'a' is ______.


If y = f(x), f'(0) = f(0) = 1 and if y = f(x) satisfies `(d^2y)/(dx^2) + (dy)/(dx)` = x, then the value of [f(1)] is ______ (where [.] denotes greatest integer function)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×