Advertisements
Advertisements
Question
Solution
We have,
\[\frac{dy}{dx} + 2y = e^{3x} . . . . . (1)\]
Clearly, it is a linear differential equation of the form
\[\frac{dy}{dx} + Py = Q\]
where
\[P = 2\]
\[Q = e^{3x} \]
\[ \therefore I . F . = e^{\int P dx} \]
\[ = e^{\int2 dx} \]
\[ = e^{2x} \]
\[\text{ Multiplying both sides of (1) by }e^{2x} ,\text{ we get }\]
\[ e^{2x} \left( \frac{dy}{dx} + 2y \right) = e^{2x} e^{3x} \]
\[ \Rightarrow e^{2x} \frac{dy}{dx} + 2 e^{2x} y = e^{5x} \]
Integrating both sides with respect to x, we get
\[y e^{2x} = \int e^{5x} dx + C\]
\[ \Rightarrow y e^{2x} = \frac{e^{5x}}{5} + C\]
\[ \Rightarrow y = \frac{1}{5} e^{3x} + C e^{- 2x} \]
\[\text{ Hence, }y = \frac{1}{5} e^{3x} + C e^{- 2x}\text{ is the required solution .} \]
APPEARS IN
RELATED QUESTIONS
Solve the following differential equation: `(x^2-1)dy/dx+2xy=2/(x^2-1)`
Find the integrating factor of the differential equation.
`((e^(-2^sqrtx))/sqrtx-y/sqrtx)dy/dx=1`
Solve the differential equation ` (1 + x2) dy/dx+y=e^(tan^(−1))x.`
Solve `sin x dy/dx - y = sin x.tan x/2`
\[\frac{dy}{dx}\] + y tan x = cos x
\[\frac{dy}{dx}\] + y cot x = x2 cot x + 2x
Find the equation of the curve passing through the point (0, 2) given that the sum of the coordinates of any point on the curve exceeds the magnitude of the slope of the tangent to the curve at that point by 5.
The slope of the tangent to the curve at any point is the reciprocal of twice the ordinate at that point. The curve passes through the point (4, 3). Determine its equation.
Solve the differential equation: (x + 1) dy – 2xy dx = 0
Solve the differential equation: (1 + x2) dy + 2xy dx = cot x dx
Solve the differential equation : `"x"(d"y")/(d"x") + "y" - "x" + "xy"cot"x" = 0; "x" != 0.`
Solve the differential equation `"dy"/"dx" + y/x` = x2.
`"dy"/"dx" + y` = 5 is a differential equation of the type `"dy"/"dx" + "P"y` = Q but it can be solved using variable separable method also.
Integrating factor of the differential equation of the form `("d"x)/("d"y) + "P"_1x = "Q"_1` is given by `"e"^(int P_1dy)`.
Solution of the differential equation of the type `("d"x)/("d"y) + "p"_1x = "Q"_1` is given by x.I.F. = `("I"."F") xx "Q"_1"d"y`.
Correct substitution for the solution of the differential equation of the type `("d"y)/("d"x) = "f"(x, y)`, where f(x, y) is a homogeneous function of zero degree is y = vx.
Correct substitution for the solution of the differential equation of the type `("d"x)/("d"y) = "g"(x, y)` where g(x, y) is a homogeneous function of the degree zero is x = vy.
If `x (dy)/(dx) = y(log y - log x + 1)`, then the solution of the dx equation is
Solve the following differential equation: (y – sin2x)dx + tanx dy = 0
Find the general solution of the differential equation: (x3 + y3)dy = x2ydx
Let y = y(x) be the solution of the differential equation `(dy)/(dx) + (sqrt(2)y)/(2cos^4x - cos2x) = xe^(tan^-1(sqrt(2)cost2x)), 0 < x < π/2` with `y(π/4) = π^2/32`. If `y(π/3) = π^2/18e^(-tan^-1(α))`, then the value of 3α2 is equal to ______.
Let y = y(x) be the solution of the differential equation `e^xsqrt(1 - y^2)dx + (y/x)dy` = 0, y(1) = –1. Then, the value of (y(3))2 is equal to ______.
Let y = y(x) be the solution of the differential equation, `(2 + sinxdy)/(y + 1) (dy)/(dx)` = –cosx. If y > 0, y(0) = 1. If y(π) = a, and `(dy)/(dx)` at x = π is b, then the ordered pair (a, b) is equal to ______.
Let y = y(x) be the solution of the differential equation, `(x^2 + 1)^2 ("dy")/("d"x) + 2x(x^2 + 1)"y"` = 1, such that y(0) = 0. If `sqrt("ay")(1) = π/32` then the value of 'a' is ______.