Advertisements
Advertisements
Question
\[\frac{dy}{dx}\] + y tan x = cos x
Solution
We have,
\[\frac{dy}{dx} + y \tan x = \cos x . . . . . \left( 1 \right)\]
Clearly, it is a linear differential equation of the form
\[\frac{dy}{dx} + Py = Q\]
where
\[P = \tan x\]
\[Q = \cos x \]
\[ \therefore \text{I.F.} = e^{\int P\ dx} \]
\[ = e^{\int\tan x dx} \]
\[ = e^{log\left| \sec x \right|} = \sec x\]
\[\text{Multiplying both sides of }\left( 1 \right)\text{ by }\sec x, \text{ we get }\]
\[\sec x\left( \frac{dy}{dx} + y \tan x \right) = \cos x \times \sec x\]
\[ \Rightarrow \sec x\frac{dy}{dx} + y \sec x \tan x = 1\]
Integrating both sides with respect to x, we get
\[y \sec x = \int dx + C\]
\[ \Rightarrow y \sec x = x + C\]
\[\text{ Hence, }y \sec x = x + C\text{ is the required solution .}\]
APPEARS IN
RELATED QUESTIONS
Solve the following differential equation: `(x^2-1)dy/dx+2xy=2/(x^2-1)`
Solve the differential equation ` (1 + x2) dy/dx+y=e^(tan^(−1))x.`
Solve `sin x dy/dx - y = sin x.tan x/2`
The decay rate of radium at any time t is proportional to its mass at that time. Find the time when the mass will be halved of its initial mass.
A wet porous substance in the open air loses its moisture at a rate proportional to the moisture content. If a sheet hung in the wind loses half of its moisture during the first hour, when will it have lost 95% moisture, weather conditions remaining the same.
Solve the differential equation: (x + 1) dy – 2xy dx = 0
Solve the differential equation: (1 + x2) dy + 2xy dx = cot x dx
Solve the differential equation : `"x"(d"y")/(d"x") + "y" - "x" + "xy"cot"x" = 0; "x" != 0.`
Solve the following differential equation :
`"dy"/"dx" + "y" = cos"x" - sin"x"`
`"dy"/"dx" + y` = 5 is a differential equation of the type `"dy"/"dx" + "P"y` = Q but it can be solved using variable separable method also.
Polio drops are delivered to 50 K children in a district. The rate at which polio drops are given is directly proportional to the number of children who have not been administered the drops. By the end of 2nd week half the children have been given the polio drops. How many will have been given the drops by the end of 3rd week can be estimated using the solution to the differential equation `"dy"/"dx" = "k"(50 - "y")` where x denotes the number of weeks and y the number of children who have been given the drops.
Which of the following solutions may be used to find the number of children who have been given the polio drops?
Solve the differential equation:
`"dy"/"dx" = 2^(-"y")`
The solution of the differential equation `(dx)/(dy) + Px = Q` where P and Q are constants or functions of y, is given by
If α, β are different values of x satisfying the equation a cos x + b sinα x = c, where a, b and c are constants, then `tan ((alpha + beta)/2)` is
If `x (dy)/(dx) = y(log y - log x + 1)`, then the solution of the dx equation is
Solve the differential equation: xdy – ydx = `sqrt(x^2 + y^2)dx`
Find the general solution of the differential equation: (x3 + y3)dy = x2ydx
Let y = y(x) be the solution of the differential equation `(dy)/(dx) + (sqrt(2)y)/(2cos^4x - cos2x) = xe^(tan^-1(sqrt(2)cost2x)), 0 < x < π/2` with `y(π/4) = π^2/32`. If `y(π/3) = π^2/18e^(-tan^-1(α))`, then the value of 3α2 is equal to ______.
If y = y(x) is the solution of the differential equation `(1 + e^(2x))(dy)/(dx) + 2(1 + y^2)e^x` = 0 and y(0) = 0, then `6(y^'(0) + (y(log_esqrt(3))))^2` is equal to ______.
The population P = P(t) at time 't' of a certain species follows the differential equation `("dp")/("dt")` = 0.5P – 450. If P(0) = 850, then the time at which population becomes zero is ______.
Let y = y(x) be the solution of the differential equation `e^xsqrt(1 - y^2)dx + (y/x)dy` = 0, y(1) = –1. Then, the value of (y(3))2 is equal to ______.
If y = f(x), f'(0) = f(0) = 1 and if y = f(x) satisfies `(d^2y)/(dx^2) + (dy)/(dx)` = x, then the value of [f(1)] is ______ (where [.] denotes greatest integer function)