English

Solve the Differential Equation : X D Y D X + Y − X + Xy Cot X = 0 ; X ≠ 0 . - Mathematics

Advertisements
Advertisements

Question

Solve the differential equation : `"x"(d"y")/(d"x") + "y" - "x" + "xy"cot"x" = 0; "x" != 0.`

Sum

Solution

`x dy/dx + y - x + xy cos x = 0`

⇒ `dy/dx + (1/x + cot x ) y = 1`

I.F. = `e^(int(1/x + cot x) dx) = e^(log(x sin x))`

= x sin x

`∴ y xx  x sin x = x sinx dx`

⇒ xy sin x = - x cos x + sin x + C

shaalaa.com
  Is there an error in this question or solution?
2015-2016 (March) All India Set 1 E

RELATED QUESTIONS

Find the integrating factor for the following differential equation:`x logx dy/dx+y=2log x`


Solve the differential equation ` (1 + x2) dy/dx+y=e^(tan^(−1))x.`


\[\frac{dy}{dx} + 2y = e^{3x}\]

\[\frac{dy}{dx} + y = e^{- 2x}\]

\[\frac{dy}{dx} + 2y = 4x\]

\[x\frac{dy}{dx} + y = x e^x\]

\[\frac{dy}{dx} + \frac{y}{x} = x^3\]

\[\frac{dy}{dx}\] + y tan x = cos x


\[\left( 1 + y^2 \right) + \left( x - e^{tan^{- 1} y} \right)\frac{dy}{dx} = 0\]

Find the equation of the curve passing through the point (0, 2) given that the sum of the coordinates of any point on the curve exceeds the magnitude of the slope of the tangent to the curve at that point by 5.


Experiments show that radium disintegrates at a rate proportional to the amount of radium present at the moment. Its half-life is 1590 years. What percentage will disappear in one year?


A wet porous substance in the open air loses its moisture at a rate proportional to the moisture content. If a sheet hung in the wind loses half of its moisture during the first hour, when will it have lost 95% moisture, weather conditions remaining the same.


Solve the differential equation: (x + 1) dy – 2xy dx = 0


Solve the differential equation: (1 + x2) dy + 2xy dx = cot x dx


Solve the differential equation `"dy"/"dx" + y/x` = x2.


`("e"^(-2sqrt(x))/sqrt(x) - y/sqrt(x))("d"x)/("d"y) = 1(x ≠ 0)` when written in the form `"dy"/"dx" + "P"y` = Q, then P = ______.


`("d"y)/("d"x) + y/(xlogx) = 1/x` is an equation of the type ______.


Correct substitution for the solution of the differential equation of the type `("d"x)/("d"y) = "g"(x, y)` where g(x, y) is a homogeneous function of the degree zero is x = vy.


If α, β are different values of x satisfying the equation a cos x + b sinα x = c, where a, b and c are constants, then `tan ((alpha + beta)/2)` is


If `x (dy)/(dx) = y(log y - log x + 1)`, then the solution of the dx equation is


Solve the differential equation: xdy – ydx = `sqrt(x^2 + y^2)dx`


Let y = y(x) be the solution of the differential equation `(dy)/(dx) + (sqrt(2)y)/(2cos^4x - cos2x) = xe^(tan^-1(sqrt(2)cost2x)), 0 < x < π/2` with `y(π/4) = π^2/32`. If `y(π/3) = π^2/18e^(-tan^-1(α))`, then the value of 3α2 is equal to ______.


Let y = y(x) be the solution of the differential equation, `(x^2 + 1)^2 ("dy")/("d"x) + 2x(x^2 + 1)"y"` = 1, such that y(0) = 0. If `sqrt("ay")(1) = π/32` then the value of  'a' is ______.


The solution of the differential equation `(1 + y^2) + (x - e^(tan^-1y)) (dy)/(dx)` = 0, is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×