Advertisements
Advertisements
Question
Find: `int_ (3"x"+ 5)sqrt(5 + 4"x"-2"x"^2)d"x"`.
Solution
`( 3x + 5)sqrt(5 + 4x - 2x^2) dx`
Let 3x + 5 = A(4 - 4x) + B
⇒ A = `-3/4, B = 8`
I = `3/4(4 - 4x)sqrt(5 + 4x + 2x^2) dx + 8 sqrt(5 + 4x - 2x^2)dx`
= `-3/4 I_1 + 8l_2 ("let")`
For I1, put 5 + 4x = - 2x2 = t
⇒ (4 - 4x) dx = dt
`-3/4 I_1 = - 3/4 sqrtt dt = - 3/4 xx 2/3 t^(3/2)`
= `-1/2 (5 + 4x - 2x^2 )^(3/2)`
`8I_2 = 8sqrt2 sqrt(7/2 - ( x - 1)^2) dx`
I = `-1/2 (5 + 4x - 2x^2 )^(3/2) + 4sqrt2(x - 1) sqrt(5/2 + 2x - x^2) + 14sqrt2 sin^-1 (sqrt2(x - 1))/sqrt7 + C`
APPEARS IN
RELATED QUESTIONS
Evaluate: `int (1+logx)/(x(2+logx)(3+logx))dx`
Evaluate: `int1/(xlogxlog(logx))dx`
Evaluate `∫_0^(3/2)|x cosπx|dx`
find `∫_2^4 x/(x^2 + 1)dx`
If `int_0^a1/(4+x^2)dx=pi/8` , find the value of a.
Evaluate the integral by using substitution.
`int_0^2 dx/(x + 4 - x^2)`
Evaluate the integral by using substitution.
`int_(-1)^1 dx/(x^2 + 2x + 5)`
The value of the integral `int_(1/3)^4 ((x- x^3)^(1/3))/x^4` dx is ______.
`int 1/(1 + cos x)` dx = _____
A) `tan(x/2) + c`
B) `2 tan (x/2) + c`
C) -`cot (x/2) + c`
D) -2 `cot (x/2)` + c
Evaluate of the following integral:
Evaluate the following integral:
\[\int\limits_0^2 \left| x^2 - 3x + 2 \right| dx\]
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate
\[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\]
Evaluate :
Evaluate : \[\int\limits_{- 2}^1 \left| x^3 - x \right|dx\] .
Find : \[\int e^{2x} \sin \left( 3x + 1 \right) dx\] .
Evaluate: \[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x}dx\] .
Evaluate: `int_-π^π (1 - "x"^2) sin "x" cos^2 "x" d"x"`.
`int_0^3 1/sqrt(3x - x^2)"d"x` = ______.
If `int x^5 cos (x^6)"d"x = "k" sin (x^6) + "C"`, find the value of k.