English

Find: ∫ ( 3 X + 5 ) √ 5 + 4 X − 2 X 2 D X . - Mathematics

Advertisements
Advertisements

Question

Find: `int_  (3"x"+ 5)sqrt(5 + 4"x"-2"x"^2)d"x"`.

Sum

Solution

`( 3x + 5)sqrt(5 + 4x - 2x^2) dx`

Let 3x + 5 = A(4 - 4x) + B

⇒ A = `-3/4, B = 8`

I = `3/4(4 - 4x)sqrt(5 + 4x + 2x^2) dx + 8 sqrt(5 + 4x - 2x^2)dx`

= `-3/4 I_1 + 8l_2 ("let")`

For I1, put 5 + 4x = - 2x2 = t

⇒ (4 - 4x) dx = dt

`-3/4 I_1 = - 3/4 sqrtt dt = - 3/4 xx 2/3 t^(3/2)`

= `-1/2 (5 + 4x - 2x^2 )^(3/2)`

`8I_2 = 8sqrt2 sqrt(7/2 - ( x - 1)^2) dx`

I = `-1/2 (5 + 4x - 2x^2 )^(3/2) + 4sqrt2(x - 1) sqrt(5/2 + 2x - x^2) + 14sqrt2 sin^-1  (sqrt2(x - 1))/sqrt7 + C`

shaalaa.com
  Is there an error in this question or solution?
2015-2016 (March) All India Set 1 E

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Evaluate:  `int (1+logx)/(x(2+logx)(3+logx))dx`


Evaluate: `int1/(xlogxlog(logx))dx`


 

Evaluate `∫_0^(3/2)|x cosπx|dx`

 

 

find `∫_2^4 x/(x^2 + 1)dx`

 

If `int_0^a1/(4+x^2)dx=pi/8` , find the value of a.


Evaluate the integral by using substitution.

`int_0^2 dx/(x + 4 - x^2)`


Evaluate the integral by using substitution.

`int_(-1)^1 dx/(x^2 + 2x  + 5)`


The value of the integral `int_(1/3)^4 ((x- x^3)^(1/3))/x^4` dx is ______.


`int 1/(1 + cos x)` dx = _____

A) `tan(x/2) + c`

B) `2 tan (x/2) + c`

C) -`cot (x/2) + c`

D) -2 `cot (x/2)` + c


Evaluate of the following integral:

\[\int \log_x \text{x  dx}\] 

\[\int\frac{2x}{\left( 2x + 1 \right)^2} dx\]

Evaluate the following integral:

\[\int\limits_0^2 \left| x^2 - 3x + 2 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_{- \pi/2}^{\pi/2} \left\{ \sin \left| x \right| + \cos \left| x \right| \right\} dx\]

 


Evaluate the following integral:

\[\int\limits_1^4 \left\{ \left| x - 1 \right| + \left| x - 2 \right| + \left| x - 4 \right| \right\} dx\]

 


Evaluate the following integral:

\[\int\limits_{- 5}^0 f\left( x \right) dx, where\ f\left( x \right) = \left| x \right| + \left| x + 2 \right| + \left| x + 5 \right|\]

 


Evaluate each of the following integral:

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \frac{\sqrt{\tan x}}{\sqrt{\tan x} + \sqrt{\cot x}}dx\]

Evaluate each of the following integral:

\[\int_{- a}^a \frac{1}{1 + a^x}dx\]`, a > 0`

Evaluate the following integral:

\[\int_{- 2}^2 \frac{3 x^3 + 2\left| x \right| + 1}{x^2 + \left| x \right| + 1}dx\]

Evaluate 

\[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\]


Evaluate : 

\[\int\limits_0^{3/2} \left| x \sin \pi x \right|dx\]

Evaluate : \[\int\limits_{- 2}^1 \left| x^3 - x \right|dx\] .


Find : \[\int e^{2x} \sin \left( 3x + 1 \right) dx\] .


Evaluate: \[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x}dx\] .


Evaluate: `int_-π^π (1 - "x"^2) sin "x" cos^2 "x"  d"x"`.


`int_0^3 1/sqrt(3x - x^2)"d"x` = ______.


If `int x^5 cos (x^6)"d"x = "k" sin (x^6) + "C"`, find the value of k.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×