English

Evaluate the Following Integral: ∫ 2 − 2 3 X 3 + 2 | X | + 1 X 2 + | X | + 1 D X - Mathematics

Advertisements
Advertisements

Question

Evaluate the following integral:

\[\int_{- 2}^2 \frac{3 x^3 + 2\left| x \right| + 1}{x^2 + \left| x \right| + 1}dx\]
Sum

Solution

\[\text{Let I} = \int_{- 2}^2 \frac{3 x^3 + 2\left| x \right| + 1}{x^2 + \left| x \right| + 1}dx\]

\[= \int_{- 2}^2 \frac{3 x^3}{x^2 + \left| x \right| + 1}dx + \int_{- 2}^2 \frac{2\left| x \right| + 1}{x^2 + \left| x \right| + 1}dx\]
\[ = I_1 + I_2\]

Consider

\[f\left( x \right) = \int_{- 2}^2 \frac{3 x^3}{x^2 + \left| x \right| + 1}dx\]

\[f\left( - x \right) = \int_{- 2}^2 \frac{3 \left( - x \right)^3}{\left( - x \right)^2 + \left| - x \right| + 1}dx = \int_{- 2}^2 \frac{- 3 x^3}{x^2 + \left| x \right| + 1}dx = - \int_{- 2}^2 \frac{3 x^3}{x^2 + \left| x \right| + 1}dx = - f\left( x \right)\]

\[\therefore I_1 = \int_{- 2}^2 \frac{3 x^3}{x^2 + \left| x \right| + 1}dx = 0 ......................\left[ \int_{- a}^a f\left( x \right)dx = \begin{cases}2 \int_0^a f\left( x \right)dx, & \text{if }f\left( - x \right) = f\left( x \right) \\ 0, & \text{if }f\left( - x \right) = - f\left( x \right)\end{cases} \right]\]

Now, consider

\[g\left( x \right) = \int_{- 2}^2 \frac{2\left| x \right| + 1}{x^2 + \left| x \right| + 1}dx\]

\[g\left( - x \right) = \int_{- 2}^2 \frac{2\left| - x \right| + 1}{\left( - x \right)^2 + \left| - x \right| + 1}dx = \int_{- 2}^2 \frac{2\left| x \right| + 1}{x^2 + \left| x \right| + 1}dx = g\left( x \right)\]

\[\therefore I_2 = \int_{- 2}^2 \frac{2\left| x \right| + 1}{x^2 + \left| x \right| + 1}dx \]
\[ = 2 \int_0^2 \frac{2\left| x \right| + 1}{x^2 + \left| x \right| + 1}dx ..................\left[ \int_{- a}^a f\left( x \right)dx = \begin{cases}2 \int_0^a f\left( x \right)dx, & \text{if }f\left( - x \right) = f\left( x \right) \\ 0, & \text{if }f\left( - x \right) = - f\left( x \right)\end{cases} \right]\]
\[ = 2 \int_0^2 \frac{2x + 1}{x^2 + x + 1}dx .................\left[ \left| x \right| = \begin{cases}x, & x \geq 0 \\ - x, & x < 0\end{cases} \right]\]
\[ = \left.2 \times \log\left( x^2 + x + 1 \right)\right|_0^2 ....................\left[ \int\frac{f'\left( x \right)}{f\left( x \right)}dx = \log f\left( x \right) + C \right]\]
\[ = 2 \times \left( \log7 - \log1 \right)\]
\[ = 2 \times \left( \log7 - 0 \right)\]
\[ = 2\log7\]

\[\therefore I = I_1 + I_2 = 0 + 2\log7 = 2\log7\]
shaalaa.com
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Exercise 20.5 [Page 95]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Exercise 20.5 | Q 31 | Page 95

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Evaluate : `int_0^4(|x|+|x-2|+|x-4|)dx`


Evaluate : `int1/(3+5cosx)dx`


Evaluate :

`∫_0^π(4x sin x)/(1+cos^2 x) dx`


If `int_0^a1/(4+x^2)dx=pi/8` , find the value of a.


Evaluate :

`int_e^(e^2) dx/(xlogx)`


Evaluate the integral by using substitution.

`int_0^1 x/(x^2 +1)`dx


Evaluate the integral by using substitution.

`int_0^2 xsqrt(x+2)`  (Put x + 2 = `t^2`)


`int 1/(1 + cos x)` dx = _____

A) `tan(x/2) + c`

B) `2 tan (x/2) + c`

C) -`cot (x/2) + c`

D) -2 `cot (x/2)` + c


Evaluate of the following integral:

(i)  \[\int x^4 dx\]

 


Evaluate of the following integral: 

\[\int\frac{1}{x^{3/2}}dx\]

Evaluate of the following integral:

\[\int 3^{2 \log_3} {}^x dx\]

Evaluate of the following integral:

\[\int \log_x \text{x  dx}\] 

Evaluate:

\[\int\frac{\cos 2x + 2 \sin^2 x}{\sin^2 x}dx\]

Evaluate: 

\[\int\frac{2 \cos^2 x - \cos 2x}{\cos^2 x}dx\]

Evaluate the following integral:

\[\int\limits_0^{\pi/2} \left| \cos 2x \right| dx\]

Evaluate the following integral:

\[\int\limits_{- \pi/4}^{\pi/4} \left| \sin x \right| dx\]

Evaluate the following integral:

\[\int\limits_1^4 \left\{ \left| x - 1 \right| + \left| x - 2 \right| + \left| x - 4 \right| \right\} dx\]

 


Evaluate the following integral:

\[\int\limits_{- 5}^0 f\left( x \right) dx, where\ f\left( x \right) = \left| x \right| + \left| x + 2 \right| + \left| x + 5 \right|\]

 


Evaluate each of the following integral:

\[\int_{- \frac{\pi}{4}}^\frac{\pi}{4} \frac{\tan^2 x}{1 + e^x}dx\]

 


Evaluate each of the following integral:

\[\int_{- a}^a \frac{1}{1 + a^x}dx\]`, a > 0`

Evaluate the following integral:

\[\int_0^\pi x\sin x \cos^2 xdx\]

Evaluate the following integral:

\[\int_{- \pi}^\pi \frac{2x\left( 1 + \sin x \right)}{1 + \cos^2 x}dx\]

Evaluate the following integral:

\[\int_0^\pi \left( \frac{x}{1 + \sin^2 x} + \cos^7 x \right)dx\]

Evaluate 

\[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\]


Find : \[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\] .


Evaluate: \[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x}dx\] .


Evaluate:  `int_-1^2 (|"x"|)/"x"d"x"`.


Evaluate: `int_1^5{|"x"-1|+|"x"-2|+|"x"-3|}d"x"`.


`int_0^1 x(1 - x)^5 "dx" =` ______.


Evaluate the following:

`int ("e"^(6logx) - "e"^(5logx))/("e"^(4logx) - "e"^(3logx)) "d"x`


Evaluate: `int_0^(π/2) sin 2x tan^-1 (sin x) dx`.


Evaluate: `int x/(x^2 + 1)"d"x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×