Advertisements
Advertisements
Question
Evaluate the following integral:
Solution
\[\text{Let I} = \int_{- 2}^2 \frac{3 x^3 + 2\left| x \right| + 1}{x^2 + \left| x \right| + 1}dx\]
\[= \int_{- 2}^2 \frac{3 x^3}{x^2 + \left| x \right| + 1}dx + \int_{- 2}^2 \frac{2\left| x \right| + 1}{x^2 + \left| x \right| + 1}dx\]
\[ = I_1 + I_2\]
Consider
\[f\left( - x \right) = \int_{- 2}^2 \frac{3 \left( - x \right)^3}{\left( - x \right)^2 + \left| - x \right| + 1}dx = \int_{- 2}^2 \frac{- 3 x^3}{x^2 + \left| x \right| + 1}dx = - \int_{- 2}^2 \frac{3 x^3}{x^2 + \left| x \right| + 1}dx = - f\left( x \right)\]
\[\therefore I_1 = \int_{- 2}^2 \frac{3 x^3}{x^2 + \left| x \right| + 1}dx = 0 ......................\left[ \int_{- a}^a f\left( x \right)dx = \begin{cases}2 \int_0^a f\left( x \right)dx, & \text{if }f\left( - x \right) = f\left( x \right) \\ 0, & \text{if }f\left( - x \right) = - f\left( x \right)\end{cases} \right]\]
Now, consider
\[g\left( - x \right) = \int_{- 2}^2 \frac{2\left| - x \right| + 1}{\left( - x \right)^2 + \left| - x \right| + 1}dx = \int_{- 2}^2 \frac{2\left| x \right| + 1}{x^2 + \left| x \right| + 1}dx = g\left( x \right)\]
\[\therefore I_2 = \int_{- 2}^2 \frac{2\left| x \right| + 1}{x^2 + \left| x \right| + 1}dx \]
\[ = 2 \int_0^2 \frac{2\left| x \right| + 1}{x^2 + \left| x \right| + 1}dx ..................\left[ \int_{- a}^a f\left( x \right)dx = \begin{cases}2 \int_0^a f\left( x \right)dx, & \text{if }f\left( - x \right) = f\left( x \right) \\ 0, & \text{if }f\left( - x \right) = - f\left( x \right)\end{cases} \right]\]
\[ = 2 \int_0^2 \frac{2x + 1}{x^2 + x + 1}dx .................\left[ \left| x \right| = \begin{cases}x, & x \geq 0 \\ - x, & x < 0\end{cases} \right]\]
\[ = \left.2 \times \log\left( x^2 + x + 1 \right)\right|_0^2 ....................\left[ \int\frac{f'\left( x \right)}{f\left( x \right)}dx = \log f\left( x \right) + C \right]\]
\[ = 2 \times \left( \log7 - \log1 \right)\]
\[ = 2 \times \left( \log7 - 0 \right)\]
\[ = 2\log7\]
APPEARS IN
RELATED QUESTIONS
Evaluate : `int_0^4(|x|+|x-2|+|x-4|)dx`
Evaluate : `int1/(3+5cosx)dx`
Evaluate :
`∫_0^π(4x sin x)/(1+cos^2 x) dx`
If `int_0^a1/(4+x^2)dx=pi/8` , find the value of a.
Evaluate :
`int_e^(e^2) dx/(xlogx)`
Evaluate the integral by using substitution.
`int_0^1 x/(x^2 +1)`dx
Evaluate the integral by using substitution.
`int_0^2 xsqrt(x+2)` (Put x + 2 = `t^2`)
`int 1/(1 + cos x)` dx = _____
A) `tan(x/2) + c`
B) `2 tan (x/2) + c`
C) -`cot (x/2) + c`
D) -2 `cot (x/2)` + c
Evaluate of the following integral:
(i) \[\int x^4 dx\]
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate:
Evaluate:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate
\[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\]
Find : \[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\] .
Evaluate: \[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x}dx\] .
Evaluate: `int_-1^2 (|"x"|)/"x"d"x"`.
Evaluate: `int_1^5{|"x"-1|+|"x"-2|+|"x"-3|}d"x"`.
`int_0^1 x(1 - x)^5 "dx" =` ______.
Evaluate the following:
`int ("e"^(6logx) - "e"^(5logx))/("e"^(4logx) - "e"^(3logx)) "d"x`
Evaluate: `int_0^(π/2) sin 2x tan^-1 (sin x) dx`.
Evaluate: `int x/(x^2 + 1)"d"x`