Advertisements
Advertisements
Question
Evaluate :
`∫_0^π(4x sin x)/(1+cos^2 x) dx`
Solution
`∫_0^π(4x sin x)/(1+cos^2 x) dx..................(1)`
Using f (x) = f (a−x), we get:
`I=∫_0^π(4(pi-x) sin x)/(1+cos^2 x) dx .....................(2)`
Adding (1) and (2), we get:
`2I=4int_0^pi(pi sinx)/(1+cos^2x)dx`
`I=2int_0^pi(pi sinx)/(1+cos^2x)dx`
Let cos x=t.
⇒−sin xdx=dt
`⇒I=2π∫_1^(−1)−1/(1+t^2)dt`
`=>I=-2pi tan^(-1) t_1^(-1)`
`=>I=-2pi(-pi/4-pi/4)`
`=>I=pi^2`
APPEARS IN
RELATED QUESTIONS
Evaluate :`int_0^(pi/2)1/(1+cosx)dx`
Evaluate : `int_0^4(|x|+|x-2|+|x-4|)dx`
Evaluate `∫_0^(3/2)|x cosπx|dx`
Evaluate `int_(-1)^2|x^3-x|dx`
Evaluate :
`∫_(-pi)^pi (cos ax−sin bx)^2 dx`
find `∫_2^4 x/(x^2 + 1)dx`
Evaluate :
`int_e^(e^2) dx/(xlogx)`
Evaluate the integral by using substitution.
`int_0^(pi/2) sqrt(sin phi) cos^5 phidphi`
Evaluate the integral by using substitution.
`int_0^1 sin^(-1) ((2x)/(1+ x^2)) dx`
Evaluate the integral by using substitution.
`int_0^2 xsqrt(x+2)` (Put x + 2 = `t^2`)
Evaluate the integral by using substitution.
`int_0^(pi/2) (sin x)/(1+ cos^2 x) dx`
Evaluate the integral by using substitution.
`int_0^2 dx/(x + 4 - x^2)`
Evaluate the integral by using substitution.
`int_(-1)^1 dx/(x^2 + 2x + 5)`
Evaluate of the following integral:
Evaluate:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate :
If `I_n = int_0^(pi/4) tan^n theta "d"theta " then " I_8 + I_6` equals ______.
Evaluate the following:
`int "dt"/sqrt(3"t" - 2"t"^2)`
`int_0^1 x^2e^x dx` = ______.
The value of `int_0^1 (x^4(1 - x)^4)/(1 + x^2) dx` is
Evaluate: `int_0^(π/2) sin 2x tan^-1 (sin x) dx`.