Advertisements
Advertisements
प्रश्न
Evaluate :
`∫_0^π(4x sin x)/(1+cos^2 x) dx`
उत्तर
`∫_0^π(4x sin x)/(1+cos^2 x) dx..................(1)`
Using f (x) = f (a−x), we get:
`I=∫_0^π(4(pi-x) sin x)/(1+cos^2 x) dx .....................(2)`
Adding (1) and (2), we get:
`2I=4int_0^pi(pi sinx)/(1+cos^2x)dx`
`I=2int_0^pi(pi sinx)/(1+cos^2x)dx`
Let cos x=t.
⇒−sin xdx=dt
`⇒I=2π∫_1^(−1)−1/(1+t^2)dt`
`=>I=-2pi tan^(-1) t_1^(-1)`
`=>I=-2pi(-pi/4-pi/4)`
`=>I=pi^2`
APPEARS IN
संबंधित प्रश्न
Evaluate: `int1/(xlogxlog(logx))dx`
Evaluate : `int1/(3+5cosx)dx`
Evaluate: `intsinsqrtx/sqrtxdx`
Evaluate the integral by using substitution.
`int_0^2 xsqrt(x+2)` (Put x + 2 = `t^2`)
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate
\[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\]
Evaluate the following integral:
Evaluate: \[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x}dx\] .
Find: `int_ (3"x"+ 5)sqrt(5 + 4"x"-2"x"^2)d"x"`.
`int_(pi/5)^((3pi)/10) [(tan x)/(tan x + cot x)]`dx = ?
If `I_n = int_0^(pi/4) tan^n theta "d"theta " then " I_8 + I_6` equals ______.
`int_0^1 x^2e^x dx` = ______.
If `int x^5 cos (x^6)"d"x = "k" sin (x^6) + "C"`, find the value of k.