Advertisements
Advertisements
प्रश्न
Evaluate : `int1/(3+5cosx)dx`
उत्तर
Let ` I=int 1/(3+5cosx)dx " put " tan (x/2)=t`
then `dx=2/(1+t^2)dt and cos x=(1-t^2)/(1+t^2)`
`I=int(2dt/(1+t^2))/(3+5((1-t^2)/(1+t^2)))`
`=2int (dt/(1+t^2))/((3(1+t^2)+5(1-t^2))/(1+t^2))`
`=2int dt/(3+3t^2+5-5t^2)`
`=2int dt/(8-2t^2)`
`=int dt/(2^2-t^2) `
`=1/(2(2)) log|(2+t)/(2-t)|+c`
`=1/4 log|(2+tan(x/2))/(2-tan(x/2))|+c`
APPEARS IN
संबंधित प्रश्न
Evaluate :
`∫_(-pi)^pi (cos ax−sin bx)^2 dx`
find `∫_2^4 x/(x^2 + 1)dx`
Evaluate :
`∫_0^π(4x sin x)/(1+cos^2 x) dx`
Evaluate: `intsinsqrtx/sqrtxdx`
If `f(x) = int_0^pi t sin t dt`, then f' (x) is ______.
Evaluate of the following integral:
Evaluate :
Evaluate:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate
\[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\]
Evaluate the following integral:
Evaluate the following integral:
Evaluate : \[\int\limits_{- 2}^1 \left| x^3 - x \right|dx\] .
Find : \[\int e^{2x} \sin \left( 3x + 1 \right) dx\] .
Evaluate: \[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x}dx\] .
Evaluate: `int_ e^x ((2+sin2x))/cos^2 x dx`
Evaluate: `int_-1^2 (|"x"|)/"x"d"x"`.
`int_(pi/5)^((3pi)/10) [(tan x)/(tan x + cot x)]`dx = ?
Evaluate the following:
`int ("e"^(6logx) - "e"^(5logx))/("e"^(4logx) - "e"^(3logx)) "d"x`
Each student in a class of 40, studies at least one of the subjects English, Mathematics and Economics. 16 study English, 22 Economics and 26 Mathematics, 5 study English and Economics, 14 Mathematics and Economics and 2 study all the three subjects. The number of students who study English and Mathematics but not Economics is
`int_0^1 x^2e^x dx` = ______.
The value of `int_0^1 (x^4(1 - x)^4)/(1 + x^2) dx` is
Evaluate: `int_0^(π/2) sin 2x tan^-1 (sin x) dx`.