Advertisements
Advertisements
प्रश्न
Evaluate the following integral:
उत्तर
\[\text{Let I} =\int_2^8 \frac{\sqrt{10 - x}}{\sqrt{x} + \sqrt{10 - x}}dx................(1)\]
Then,
\[I = \int_2^8 \frac{\sqrt{10 - \left( 2 + 8 - x \right)}}{\sqrt{2 + 8 - x} + \sqrt{10 - \left( 2 + 8 - x \right)}}dx .....................\left[ \int_a^b f\left( x \right)dx = \int_a^b f\left( a + b - x \right)dx \right]\]
\[ = \int_2^8 \frac{\sqrt{x}}{\sqrt{10 - x} + \sqrt{x}}dx ................(2)\]
Adding (1) and (2), we have
\[2I = \int_2^8 \frac{\sqrt{10 - x} + \sqrt{x}}{\sqrt{x} + \sqrt{10 - x}}dx\]
\[ \Rightarrow 2I = \int_2^8 dx\]
\[ \Rightarrow 2I = \left.x\right|_2^8 \]
\[ \Rightarrow 2I = 8 - 2 = 6\]
\[ \Rightarrow I = 3\]
APPEARS IN
संबंधित प्रश्न
Evaluate: `int (1+logx)/(x(2+logx)(3+logx))dx`
Evaluate : `int1/(3+5cosx)dx`
find `∫_2^4 x/(x^2 + 1)dx`
Evaluate :
`∫_0^π(4x sin x)/(1+cos^2 x) dx`
Evaluate the integral by using substitution.
`int_0^1 x/(x^2 +1)`dx
Evaluate the integral by using substitution.
`int_0^2 xsqrt(x+2)` (Put x + 2 = `t^2`)
`int 1/(1 + cos x)` dx = _____
A) `tan(x/2) + c`
B) `2 tan (x/2) + c`
C) -`cot (x/2) + c`
D) -2 `cot (x/2)` + c
Evaluate of the following integral:
(i) \[\int x^4 dx\]
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate:
Evaluate :
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate
\[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\]
Evaluate the following integral:
Evaluate: \[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x}dx\] .
Evaluate: `int_ e^x ((2+sin2x))/cos^2 x dx`
Evaluate: `int_-π^π (1 - "x"^2) sin "x" cos^2 "x" d"x"`.
`int_(pi/5)^((3pi)/10) [(tan x)/(tan x + cot x)]`dx = ?
If `I_n = int_0^(pi/4) tan^n theta "d"theta " then " I_8 + I_6` equals ______.
`int_0^(pi4) sec^4x "d"x` = ______.
Evaluate the following:
`int "dt"/sqrt(3"t" - 2"t"^2)`
Find: `int (dx)/sqrt(3 - 2x - x^2)`
Evaluate:
`int (1 + cosx)/(sin^2x)dx`