मराठी

Evaluate the Following Integral: ∫ π 0 X Sin X Cos 2 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following integral:

\[\int_0^\pi x\sin x \cos^2 xdx\]
बेरीज

उत्तर

\[\text{Let I} =\int_0^\pi x\sin x \cos^2 xdx .....................(1)\]

Then,

\[I = \int_0^\pi \left( \pi - x \right)\sin\left( \pi - x \right) \cos^2 \left( \pi - x \right)dx ..................\left[ \int_0^a f\left( x \right)dx = \int_0^a f\left( a - x \right)dx \right]\]
\[ = \int_0^\pi \left( \pi - x \right)\sin x \cos^2 xdx .................(2)\]

Adding (1) and (2), we have

\[2I = \int_0^\pi \left( \pi - x + x \right)\sin x \cos^2 xdx\]
\[ \Rightarrow 2I = \pi \int_0^\pi \sin x \cos^2 xdx\]
\[ \Rightarrow 2I = - \pi \int_0^\pi \cos^2 x\left( - \sin x \right)dx\]
\[ \Rightarrow 2I = \left.- \pi \times \frac{\cos^3 x}{3}\right|_0^\pi .................\left[ \int \left[ f\left( x \right) \right]^n f'\left( x \right)dx = \frac{\left[ f\left( x \right) \right]^{n + 1}}{n + 1} + C \right]\]
\[ \Rightarrow 2I = - \frac{\pi}{3}\left( \cos^3 \pi - \cos^2 0 \right)\]

\[\Rightarrow 2I = - \frac{\pi}{3}\left( - 1 - 1 \right) = \frac{2\pi}{3}\]
\[ \Rightarrow I = \frac{\pi}{3}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Definite Integrals - Exercise 20.5 [पृष्ठ ९५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 20 Definite Integrals
Exercise 20.5 | Q 21 | पृष्ठ ९५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Evaluate :`int_0^(pi/2)1/(1+cosx)dx`

 


Evaluate: `int1/(xlogxlog(logx))dx`


 

Evaluate `∫_0^(3/2)|x cosπx|dx`

 

Evaluate :

`∫_(-pi)^pi (cos ax−sin bx)^2 dx`


Evaluate :

`∫_0^π(4x sin x)/(1+cos^2 x) dx`


Evaluate: `intsinsqrtx/sqrtxdx`

 


Evaluate the integral by using substitution.

`int_0^1 x/(x^2 +1)`dx


Evaluate the integral by using substitution.

`int_0^(pi/2) (sin x)/(1+ cos^2 x) dx`


Evaluate of the following integral: 

\[\int x^\frac{5}{4} dx\]

Evaluate of the following integral: 

\[\int\frac{1}{x^5}dx\]

Evaluate of the following integral:

\[\int 3^{2 \log_3} {}^x dx\]

Evaluate: 

\[\int\frac{1}{a^x b^x}dx\]

\[\int\frac{2x}{\left( 2x + 1 \right)^2} dx\]

Evaluate the following integral:

\[\int\limits_{- 4}^4 \left| x + 2 \right| dx\]

Evaluate the following integral:

\[\int\limits_{- \pi/2}^{\pi/2} \left\{ \sin \left| x \right| + \cos \left| x \right| \right\} dx\]

 


Evaluate each of the following integral:

\[\int_{- \frac{\pi}{4}}^\frac{\pi}{4} \frac{\tan^2 x}{1 + e^x}dx\]

 


Evaluate each of the following integral:

\[\int_{- a}^a \frac{1}{1 + a^x}dx\]`, a > 0`

Evaluate each of the following integral:

\[\int_{- \frac{\pi}{2}}^\frac{\pi}{2} \frac{\cos^2 x}{1 + e^x}dx\]

Evaluate the following integral:

\[\int_{- \pi}^\pi \frac{2x\left( 1 + \sin x \right)}{1 + \cos^2 x}dx\]

Evaluate 

\[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\]


Evaluate the following integral:

\[\int_0^{2\pi} \sin^{100} x \cos^{101} xdx\]

 


Evaluate the following integral:

\[\int_0^\frac{\pi}{2} \frac{a\sin x + b\sin x}{\sin x + \cos x}dx\]

 


Find : \[\int e^{2x} \sin \left( 3x + 1 \right) dx\] .


Evaluate: `int_-π^π (1 - "x"^2) sin "x" cos^2 "x"  d"x"`.


Evaluate:  `int_-1^2 (|"x"|)/"x"d"x"`.


`int_0^1 x(1 - x)^5 "dx" =` ______.


`int_0^(pi4) sec^4x  "d"x` = ______.


`int_0^1 sin^-1 ((2x)/(1 + x^2))"d"x` = ______.


Evaluate the following:

`int ("e"^(6logx) - "e"^(5logx))/("e"^(4logx) - "e"^(3logx)) "d"x`


Evaluate the following:

`int "dt"/sqrt(3"t" - 2"t"^2)`


Each student in a class of 40, studies at least one of the subjects English, Mathematics and Economics. 16 study English, 22 Economics and 26 Mathematics, 5 study English and Economics, 14 Mathematics and Economics and 2 study all the three subjects. The number of students who study English and Mathematics but not Economics is


The value of `int_0^1 (x^4(1 - x)^4)/(1 + x^2) dx` is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×