Advertisements
Advertisements
प्रश्न
Evaluate each of the following integral:
उत्तर
\[\text{Let I} =\int_{- \frac{\pi}{4}}^\frac{\pi}{4} \frac{\tan^2 x}{1 + e^x}dx................\left(1\right)\]
Then,
\[I = \int_{- \frac{\pi}{4}}^\frac{\pi}{4} \frac{\tan^2 \left[ \frac{\pi}{4} + \left( - \frac{\pi}{4} \right) - x \right]}{1 + e^\left[ \frac{\pi}{4} + \left( - \frac{\pi}{4} \right) - x \right]}dx .......................\left[ \int_a^b f\left( x \right)dx = \int_a^b f\left( a + b - x \right)dx \right]\]
\[ = \int_{- \frac{\pi}{4}}^\frac{\pi}{4} \frac{\tan^2 \left( - x \right)}{1 + e^{- x}}dx\]
\[ = \int_{- \frac{\pi}{4}}^\frac{\pi}{4} \frac{\tan^2 x}{1 + \frac{1}{e^x}}dx\]
\[ = \int_{- \frac{\pi}{4}}^\frac{\pi}{4} \frac{e^x \tan^2 x}{e^x + 1}dx . . . . . \left( 2 \right)\]
Adding (1) and (2), we get
\[2I = \int_{- \frac{\pi}{4}}^\frac{\pi}{4} \left( \frac{\tan^2 x}{1 + e^x} + \frac{e^x \tan^2 x}{1 + e^x} \right)dx\]
\[ \Rightarrow 2I = \int_{- \frac{\pi}{4}}^\frac{\pi}{4} \frac{\left( 1 + e^x \right) \tan^2 x}{1 + e^x}dx\]
\[ \Rightarrow 2I = \int_{- \frac{\pi}{4}}^\frac{\pi}{4} \tan^2 xdx\]
\[ \Rightarrow 2I = \int_{- \frac{\pi}{4}}^\frac{\pi}{4} \left( \sec^2 x - 1 \right)dx\]
\[ \Rightarrow 2I = \tan x_{- \frac{\pi}{4}}^\frac{\pi}{4} - x_{- \frac{\pi}{4}}^\frac{\pi}{4} \]
\[ \Rightarrow 2I = \left[ \tan\frac{\pi}{4} - \tan\left( - \frac{\pi}{4} \right) \right] - \left[ \frac{\pi}{4} - \left( - \frac{\pi}{4} \right) \right]\]
\[ \Rightarrow 2I = \left( 1 + 1 \right) - \left( \frac{2\pi}{4} \right)\]
\[ \Rightarrow 2I = 2 - \frac{\pi}{2}\]
\[ \Rightarrow I = 1 - \frac{\pi}{4}\]
Notes
This answer does not matches with the given answer in the book.
APPEARS IN
संबंधित प्रश्न
Evaluate: `int1/(xlogxlog(logx))dx`
Evaluate `int_(-1)^2|x^3-x|dx`
Evaluate: `intsinsqrtx/sqrtxdx`
Evaluate the integral by using substitution.
`int_0^1 x/(x^2 +1)`dx
Evaluate the integral by using substitution.
`int_0^1 sin^(-1) ((2x)/(1+ x^2)) dx`
If `f(x) = int_0^pi t sin t dt`, then f' (x) is ______.
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate :
Evaluate the following integral:
\[\int\limits_0^2 \left| x^2 - 3x + 2 \right| dx\]
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate :
Evaluate : \[\int\limits_{- 2}^1 \left| x^3 - x \right|dx\] .
Find : \[\int e^{2x} \sin \left( 3x + 1 \right) dx\] .
Evaluate: \[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x}dx\] .
`int_0^1 x(1 - x)^5 "dx" =` ______.
`int_0^3 1/sqrt(3x - x^2)"d"x` = ______.
Evaluate the following:
`int ("e"^(6logx) - "e"^(5logx))/("e"^(4logx) - "e"^(3logx)) "d"x`
Evaluate: `int_0^(π/2) sin 2x tan^-1 (sin x) dx`.
Evaluate:
`int (1 + cosx)/(sin^2x)dx`