मराठी

Evaluate Each of the Following Integral: ∫ π 4 − π 4 Tan 2 X 1 + E X D X - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate each of the following integral:

\[\int_{- \frac{\pi}{4}}^\frac{\pi}{4} \frac{\tan^2 x}{1 + e^x}dx\]

 

बेरीज

उत्तर

\[\text{Let I} =\int_{- \frac{\pi}{4}}^\frac{\pi}{4} \frac{\tan^2 x}{1 + e^x}dx................\left(1\right)\]

Then,

\[I = \int_{- \frac{\pi}{4}}^\frac{\pi}{4} \frac{\tan^2 \left[ \frac{\pi}{4} + \left( - \frac{\pi}{4} \right) - x \right]}{1 + e^\left[ \frac{\pi}{4} + \left( - \frac{\pi}{4} \right) - x \right]}dx .......................\left[ \int_a^b f\left( x \right)dx = \int_a^b f\left( a + b - x \right)dx \right]\]
\[ = \int_{- \frac{\pi}{4}}^\frac{\pi}{4} \frac{\tan^2 \left( - x \right)}{1 + e^{- x}}dx\]
\[ = \int_{- \frac{\pi}{4}}^\frac{\pi}{4} \frac{\tan^2 x}{1 + \frac{1}{e^x}}dx\]
\[ = \int_{- \frac{\pi}{4}}^\frac{\pi}{4} \frac{e^x \tan^2 x}{e^x + 1}dx . . . . . \left( 2 \right)\]

Adding (1) and (2), we get

\[2I = \int_{- \frac{\pi}{4}}^\frac{\pi}{4} \left( \frac{\tan^2 x}{1 + e^x} + \frac{e^x \tan^2 x}{1 + e^x} \right)dx\]
\[ \Rightarrow 2I = \int_{- \frac{\pi}{4}}^\frac{\pi}{4} \frac{\left( 1 + e^x \right) \tan^2 x}{1 + e^x}dx\]
\[ \Rightarrow 2I = \int_{- \frac{\pi}{4}}^\frac{\pi}{4} \tan^2 xdx\]
\[ \Rightarrow 2I = \int_{- \frac{\pi}{4}}^\frac{\pi}{4} \left( \sec^2 x - 1 \right)dx\]

\[\Rightarrow 2I = \int_{- \frac{\pi}{4}}^\frac{\pi}{4} \sec^2 xdx - \int_{- \frac{\pi}{4}}^\frac{\pi}{4} dx\]
\[ \Rightarrow 2I = \tan x_{- \frac{\pi}{4}}^\frac{\pi}{4} - x_{- \frac{\pi}{4}}^\frac{\pi}{4} \]
\[ \Rightarrow 2I = \left[ \tan\frac{\pi}{4} - \tan\left( - \frac{\pi}{4} \right) \right] - \left[ \frac{\pi}{4} - \left( - \frac{\pi}{4} \right) \right]\]
\[ \Rightarrow 2I = \left( 1 + 1 \right) - \left( \frac{2\pi}{4} \right)\]
\[ \Rightarrow 2I = 2 - \frac{\pi}{2}\]
\[ \Rightarrow I = 1 - \frac{\pi}{4}\]
shaalaa.com

Notes

This answer does not matches with the given answer in the book.

  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Definite Integrals - Exercise 20.4 [पृष्ठ ६१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 20 Definite Integrals
Exercise 20.4 | Q 5 | पृष्ठ ६१

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Evaluate: `int1/(xlogxlog(logx))dx`


 

Evaluate `int_(-1)^2|x^3-x|dx`

 

Evaluate: `intsinsqrtx/sqrtxdx`

 


Evaluate the integral by using substitution.

`int_0^1 x/(x^2 +1)`dx


Evaluate the integral by using substitution.

`int_0^1 sin^(-1) ((2x)/(1+ x^2)) dx`


If `f(x) = int_0^pi t sin  t  dt`, then f' (x) is ______.


Evaluate of the following integral: 

\[\int\frac{1}{x^{3/2}}dx\]

Evaluate of the following integral: 

\[\int 3^x dx\]

Evaluate of the following integral:

\[\int\frac{1}{\sqrt[3]{x^2}}dx\]

Evaluate : 

\[\int\frac{e^{6 \log_e x} - e^{5 \log_e x}}{e^{4 \log_e x} - e^{3 \log_e x}}dx\]

\[\int\frac{2x}{\left( 2x + 1 \right)^2} dx\]

Evaluate the following integral:

\[\int\limits_0^2 \left| x^2 - 3x + 2 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_{- 6}^6 \left| x + 2 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_{- 2}^2 \left| x + 1 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_0^{\pi/2} \left| \cos 2x \right| dx\]

Evaluate the following integral:

\[\int\limits_2^8 \left| x - 5 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_0^4 \left( \left| x \right| + \left| x - 2 \right| + \left| x - 4 \right| \right) dx\]

Evaluate each of the following integral:

\[\int_0^{2\pi} \frac{e^\ sin x}{e^\ sin x + e^{- \ sin x}}dx\]

 


Evaluate each of the following integral:

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \frac{\sqrt{\tan x}}{\sqrt{\tan x} + \sqrt{\cot x}}dx\]

Evaluate each of the following integral:

\[\int_{- \frac{\pi}{2}}^\frac{\pi}{2} \frac{\cos^2 x}{1 + e^x}dx\]

Evaluate each of the following integral:

\[\int_{- \frac{\pi}{4}}^\frac{\pi}{4} \frac{x^{11} - 3 x^9 + 5 x^7 - x^5 + 1}{\cos^2 x}dx\]

Evaluate the following integral:

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \frac{1}{1 + \cot^\frac{3}{2} x}dx\]

 


Evaluate the following integral:

\[\int_0^\pi x\sin x \cos^2 xdx\]

Evaluate the following integral:

\[\int_0^{2\pi} \sin^{100} x \cos^{101} xdx\]

 


Evaluate : 

\[\int\limits_0^{3/2} \left| x \sin \pi x \right|dx\]

Evaluate : \[\int\limits_{- 2}^1 \left| x^3 - x \right|dx\] .


Find : \[\int e^{2x} \sin \left( 3x + 1 \right) dx\] .


Evaluate: \[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x}dx\] .


`int_0^1 x(1 - x)^5 "dx" =` ______.


`int_0^3 1/sqrt(3x - x^2)"d"x` = ______.


Evaluate the following:

`int ("e"^(6logx) - "e"^(5logx))/("e"^(4logx) - "e"^(3logx)) "d"x`


Evaluate: `int_0^(π/2) sin 2x tan^-1 (sin x) dx`.


Evaluate:

`int (1 + cosx)/(sin^2x)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×